

Comparative studies of different input and control
methods in a real time tabletop interaction context

A comparative analysis of Tangible User Interfaces and Multi-Touch within the

context of a real-time tabletop video game

Giovanni Maria Troiano

UPF MASTER THESIS / 2011

Thesis Supervisor

Carles F. Julià (Music Technology Group -MTG)

Thesis Coordinator

Dr.Sergi Jordà Puig (Music Technology Group -MTG)

 ii

 iii

Acknowledgements

 I wish to thank my supervisors Carles F. Julià and my coordinator Dr.Sergi Jordà
Puig from the MTG lab for their precious advices, their constant support, generous
assistance and continuous encouragement. I’m also very grateful to Ulysses Bernardet
from the SPECS lab for his thoughtful suggestions and his fundamental reflections and
insights that helped me to find right solutions; to Jitesh Joshi who assisted me while
programming the application used for my experiment; to Sebastian Mealla C. from the
MTG lab and Juan Gabriel Tirado for their precious help and advices.

 Finally I would like to thank all my classmates of the Interdisciplinary Master in
Cognitive Systems and Interactive Media, for having shared with me a wonderful
experience here in Barcelona.

 v

Abstract
 This report presents the results of an exploratory study of a tangible and a multi-
touch input control methods in a real-time tabletop interaction context. The study
investigated the effect of the interface on user’s performances of accuracy-precision
and precision-rapidity in target deflection and target interception tasks, performed in the
context of a real-time tabletop video game. Participants played with two different
“video game alike” applications using each input method on a classical ReacTable set
up. The effect of both controls was investigated through quantitative performance
measurement of the gameplay, as well as a qualitative analysis of participant’s
responses on post-test questionnaire and interview, regarding usability and user
experience. Main findings revealed that tangible control better enabled for performance
in both tasks, and that it generally created a sense of major control and comfortability
with respect to multi-touch input method. The drawbacks of multi-touch were partially
due to some issues related to the tracking technology used, some inherent limits of the
application designed for the experiment and the uncomfortability created by the friction
of the fingers on the surface when rapid sliding movements were performed. However,
the qualitative analysis showed positive sensations of the users in favour of multi-touch
control, in which it was perceived as a very intuitive and accessible control method.
This result is partially in contrast with the findings of Lucchi et al. in [86], showing that,
if less complicated actions are required in manipulation with the use of multi-touch
control, the trend is to perceive it as more approachable and easy to acquire. The study
contributes to understanding the implications of using of these two input control
methods in a real-time interaction context, which is a domain that have not received
great attention from the scientific community for this comparative studies.

Keywords: Input Devices, TUI, Tangible, Interactive Surface, Multi-Touch,
Reactable, Real-Time, Interaction, Video Game, Tabletops, Control, Usability.

Table of Contents

Abstract .. v
1. INTRODUCTION .. 1

1.1 Problem Statement ... 1
1.2 Comparative analysis of different input control methods in HCI.......................... 2

1.2.1 Input devices classification and taxonomies.. 2
1.2.2 Implementation of controls... 5
1.2.3 Evaluation methods and comparative analysis .. 6

1.3 Tabletop interaction and input control methods ... 9
1.3.1 Historical account: early prototypes.. 9
1.3.2 From BUILD-IT to Microsoft Second Light ... 11
1.3.3 Gestures and interaction ... 16

1.4 Tabletop Input Control Methods.. 17
1.4.1 Tangible User Interfaces (TUI)... 17
1.4.2 Touch-screen and Multi-Touch... 20

1.5 Comparative analysis of TUI and Multi-touch... 23
1.5.1 TUI and Multi-touch differences and similarities .. 23
1.5.2 Previous works... 23

1.6. RTI in HCI and video games .. 25
1.6.1 Defining RTI.. 25
1.6.2 Main concepts and ideas... 25
1.6.3 RTI in video games .. 26

2. SYSTEM DESIGN... 29
2.1 RTI Application in Tabletop Interaction .. 29

2.1.1 Design Goals .. 29
2.1.2 Hardware.. 30
2.1.3 Software... 31

3. METHODS... 34
3.1 Experiment Setup and Protocol ... 34
3.2 Sample.. 36
3.3 Task Design .. 36
3.4 Measures... 37

4. RESULTS... 40
4.1 Task 1: Accuracy-Precision... 41

4.1.1 Correlation analysis between Performance and Target Size, Target Distance,
Target Angle ... 41

4.2 Task 2: Precision-Rapidity .. 43
4.2.1 Correlation analysis between Performance and Target Speed, Target Starting
Position, Difficulty.. 44
4.2.2 Reaction Time.. 46

4.3 Post-Test ... 48
4.3.1 TUI evaluation ... 48
4.3.2 Multi-Touch evaluation .. 48
4.3.3 Interview.. 48

5. DISCUSSION & FUTURE WORK.. 51
5.1 Discussion... 51
5.2 Faced problems and future works.. 52

6. CONCLUSION... 55

 vii

REFERENCES... 57
APPENDIX A .. 67

1.1 Tables of Results Task 1... 67
... 67
1.1.1 Correlation analysis Task 1... 68

1.2 Tables of results Task 2.. 69
1.2.1 Correlation analysis.. 70
1.2.2 Reaction Time analysis... 71

1.3 Post-Test analysis... 72
1.3.1 Tangible evaluation (word cloud) ... 72
1.3.2 Multi-Touch evaluation (word cloud) ... 72
1.3.3 Comments from the interview... 72

APPENDIX B... 75
1.1 Pre-Test Questionnaire... 75
... 76
1.2 Post-Test Questionnaire .. 77
... 78
APPENDIX C... 79
1.1 Processing code for application used in Task 1, implementation of Multi-Touch
control .. 79
1.2 Processing code for application used in Task 1, implementation of Tangible control
... 93
1.3 Processing code for application used in Task 2, implementation of Multi-Touch
control .. 106
1.4 Processing code for application used in Task 2, implementation of Tangible control
... 119

 1

1. INTRODUCTION

1.1 Problem Statement

 Multi-touch, touch-screen and in general input control methods that encompass
direct manipulation or multiple fingers interaction, are emerging as good high-degrees of
freedom inputs. Despite presenting some specific problems with precise gestures [114],
due to their ease of use and their intuitive affordances they are indeed among the most
implemented controls nowadays, especially on portable devices, such as touch-sensitive
tablets, touch-screen mobile technology, leptops and similar. For this reason, many
researchers and developers in the field of HCI have tried to understand multi-touch and
touch-screen benefits in terms of usability, effectiveness and efficiency, in order to
improve its implementation [6, 10, 23, 22, 98, 120]. While bimanual interaction
strategies with multi-touch and hybrid pen/multi-touch has been widely studied [6, 52,
53], the implications of using two or more fingers with the same hands have not been
completely understood yet. Furthermore, outside the domain of mobile technology,
when the multi-touch input is implemented in tabletops for the control and the
manipulation of GUIs (Graphical User Interfaces) and virtual elements, his evaluation
often crosses with the more robust TUI (Tangible User Interface). Due to their similar
properties, interaction purposes and applications, this two control methods invite us to
question whether they can be more suitable for some types of gesture and to what
extent they can be complementary interacting in the same context. In cases like the
ReacTable1 [72] or Facet-Streams2 [69] for instance, TUI and multi-touch have been
smartly implemented together in the same interactive set up, in order to let the users
take advantage of the specific characteristics of both control methods, to appropriately
accomplish different types of actions and gestures in relation to their tasks. This
examples clearly shows how multi-touch and tangible controls can be suitable for same
devices or set ups, but at the same time they optimize user’s experience when addressed
to different type of uses.

 One of the real challenges that has been undertaken by researches in the last few
years, was to understand the natural placement and the gestural possibilities of these two
control methods in relation with their physical affordances, adaptability, ease of use,
intuitiveness, degrees of freedom, and relative limitations. Previous studies that have
compared the use of tangibles and multi-touch [86, 114], produced results that confirm
how tangible controls are still more robust and reliable with respect to the multi-touch
when precise gestures are required. Recent studies on tangible and multi-touch
interaction, suggest this comparative analysis has to be done away from the rhetoric of
which control might be better and which worst [69]. However, while many experiments
have been conducted on the use of tangible and multi-touch in non RTI (Real Time
Interaction) context, so far, the community have not paid much attention in studying and
investigating the use of this two control methods in a RTI context. Since the analysis of
different input devices in HCI often made use of tasks involving precise physical
actions and gestures [26, 65, 67, 89], such as pointing, dragging, acquiring target,

1 http://www.reactable.com/
2 http://www.youtube.com/watch?v=giDF9lKhCLc

 2

intercepting moving targets, etc., Fitts’s law [35] has generally shown to be a good
predictor model on which shaping and evaluating user and input device performances.
However, for a RTI context, such as a video game for instance, where user’s action are
generally less constrained to tapping back and forth with a stylus pen, or pointing with a
laser from point A to point B, the pool of gestures that can be performed through the use
of tangible and multi-touch controls may be too complex to be measured only with
Fitts’s law, therefore alternative solutions and strategies in evaluating input devices and
user performances in this interaction context must be proposed and experimented.

1.2 Comparative analysis of different input control methods in
HCI

1.2.1 Input devices classification and taxonomies
 Several studies and researches have been conducted on different typologies,
characteristics, use and implementation of input control methods in HCI and multimedia
application [13, 38, 91]. Due to the very heterogeneous nature of the different tasks a
system or a workstation can provide the user with, finding a universal control that can
allow the accomplishment of any task in the appropriate way, would be practically
impossible. According to Buxton, the choice of the right input technology to be used,
whose qualities can better optimize user‘s performances, must be a “trade-off” between
the physical characteristics of the input control method and the type of tasks that one
has to perform [20]. Hence, a study about systematic knowledge and taxonomy of input
control methods and technologies, helps out detecting the right position for this “trade-
off”. Foley et al. [38] proposed a taxonomy of input technologies based on their relative
graphical tasks (see Figure 1), but since single devices appear many times in the leaves
of their trees, this taxonomy does not help a systematic detection of similarities and
differences among input devices.

Figure 1: Foley et al. trees, on the left side the main three group representing some computer
graphic input, in the center the action to be performed, on the right side the input devices
mapped into this actions

 3

The same attempt to categorize input technologies was made by Buxton in [13], but
instead of starting from the action to be performed and then detecting the right input
technology to use, he started from the physical characteristics and spatial dimension of
the controls, trying to assess a basic design for input devices independently form
graphical tasks (see Figure 2). However, this taxonomy takes into account only
continuous physical devices and does not discuss the possibility of combining
individual inputs into more complex types of controls.

 Figure 2: Bill Buxton's input taxonomy (1983)

A step forward was made by Card et al. in [91], where they reviewed Foley’s

and Buxton’s taxonomies by reporting these models in their new paradigm (see Figure
3), as well as proposing their own approach. It is important to say that their study about
input devices focused especially on the expressiveness of the input technologies, i.e. the
ways in which their physical manipulation can communicate meaning to an application.
Therefore, their work was mainly focused on classifying the devices according to three
fundamental criteria: 1) the physical properties that an input device transduces, 2) how
many DOF (Degrees Of Freedom) it can sense, 3) the measure of the input domain set
(from discrete to continuous, i.e. from 1 to infinite). In this way, they were able to
compensate the lack of Buxton’s taxonomy, taking into account discrete inputs as well
as continuous ones.

 4

Figure 3: Various example of taxonomies by Card et al. (1990)

Graham et al. in [41] have introduced a model called Dimension Space (see
Figure 4), on which categorize input devices through a new design approach, which
transcends the principal that user interfaces and digital systems are two distinct parts of
the interaction process, but they are rather combined into complete systems through the
richly interaction of physical and virtual “entities”. In their explanation, richly
interactive applications must be designed as “complete systems involving mutual
interaction of users, software and physical entities” (Graham et al., 2000); therefore the
description of an input device is not limited to the dimensions it can sense, how many
DOF it has and what are its physical properties. Here an input device is described with
respect to the space in which it is implemented and used, where different cognitive and
physical qualities converge. Therefore, the understanding and evaluation of the control
itself cannot be possible just from a technico-physical point of view, but it is rather
extending to the degrees in which it is integrated in the system, the way it acts with
respect to the system and how it is perceived from the user within the interactive
experience.

Figure 4: Graham et al. the Dimension Space, the plot is describing various characteristics of
the "entities" (2000)

 5

1.2.2 Implementation of controls
 As described before, different input taxonomies have been proposed that tried to
explain and optimize the way users can manage input controls, some of them more input
device centered [33], other more focused on gestures and interaction [19, 53, 76, 119].
However, improving the quality of interaction “tout court” between users and systems
is generally the final aim of these studies. In order to achieve refined control techniques
and providing users with more possible ways to accomplish different tasks, it is
therefore essential to know how to appropriately combining input’s physical
characteristics with different types of feedback (audio, video, tactile, etc.). As explained
in related works [51], to rightly implement an input control method, designers have to
take into account physical sensors, feedback presented to the user, ergonomic aspects,
interaction techniques supported by a system, but also the cognitive modes in which
humans are perceiving the interaction. Hunt and Kirk in [60] have detected two distinct
modes of operation or thinking that human are using in controlling the elements of an
interactive system, i.e. analytic and holistic. The former is regarded as essentially
sequential and logically ordered, giving much importance to the single information and
details perceived, whereas the latter gives more importance to the overall effect of the
interaction. For instance, when interacting with a desktop or a laptop computer, users
are generally provided with a set of multiple options, through which they perform
navigation and single sequential choices using one specific device (i.e. mouse or
keyboard); therefore this can be regarded as an analytic mode of interaction. On the
contrary, when the system supports the use of more controls at the same time to modify
different parameters, allowing the user to manage multiple contemporary choices, the
interaction would be based on a holistic mode and perceived as a continuum rather than
sequential. Due to the largely predominant WIMP (Window, Icon, Menu, Pointing)
paradigm set by desktop interaction of PC (Personal Computer), it is in Hunt and Kirk
opinion that nowadays “the interaction of humans with computers and computer
interfaces are unhealthily dominated by ‘analytical’ interaction” (Hunt and Kirk,
2000). However, this distinction helps out understanding an important issue in control
implementation and design, opened up by Buxton in [14], related to whether input
devices can supply for absolute or relative values, and how the choice between those
characteristics define the dimension in which the control method moves in, i.e. if it is
time or spatially multiplexed (see Figure 5).

Figure 5: A classical example of a time multiplexed control (mouse) and a spatial multiplexed
one (mixer). While with the former many parameters are modified sequentially in time with the
use of one device, with the latter many parameters are modified at the same time through the
use of many dedicated transducers for each parameter

 6

“The example comes from process controls. There are (at least) two philosophies of
design that can be followed in such applications. In the first, space multiplexing, there is
a dedicated physical transducer for every parameter that is to be controlled. In the
second, time multiplexing, there are fewer transducers than parameters. Such systems
are designed so that a single device can be used to control different parameters at
different stages of an operation” (Buxton, 1986). In other words, if the dimension of the
input control method is time-multiplexed, we would use one control to do different
sequential actions in time (as in the case of WIMP), therefore the system would be in
charge of the dialogue and we would be using an analytical way of thinking in the
interaction. In contrast, if the dimension of the input control method is space-
multiplexed, we would use different controls to modify many parameters
simultaneously; this would allow for a dialogue human-computer that has no fixed
ordering, where the single modifications and processes would be perceived as a whole
and continuous, leading us to the use of a holistic way of thinking. These dimensional,
physical and cognitive factors are indeed affecting input control’s implementation
strategies and the way they are mapped3 with respect to the logical interface. For
instance, it is extensively explained in [36] how the use of multiple tangible controls4 is
more effective at spatial layout tasks, and how the implementation of these type of
controls is correcting an inherent dissonance of traditional GUIs, where “the display is
often space-multiplexed while the input is time-multiplexed” (Fitzmaurice et al., 1995).
Hence, if we were to interact with a classical WIMP using multiple tangible controls, we
could have argued that the way the input devices were implemented with respect to the
system and mapped with the logical interface, would have allowed us for a more
consistent and rapid use of the interface. However, it is not always the case that it is
just enough modifying the mapping or implementing controls in a different way to
improve the interaction between system and user and its performance. For this reason a
comparative analysis of different input control methods, helps designer and researcher in
understanding whether the potential improvement can rely on implementation, mapping,
perceptual structure of tasks, ergonomic aspects, characteristics of the controls or
physical actions and movements.

1.2.3 Evaluation methods and comparative analysis
The research and experimentation in the evaluation of existing input devices, as

well as on the design of new ones, have seen the production of several studies and
works in the literature of HCI. Most of these works are focused on defining
representative tasks [16, 21, 26, 106, 125], analytical models for aimed movements [1,
2, 46, 88] and comparative analysis and evaluation of different devices [26, 63, 124,
127]. In [16] Buxton proposed a set tasks based on generic transactions performed by
users while interacting with classical GUIs, i.e. pursuit tracking, target acquisition,
freehand inking, tracing and digitizing, constrained circular and linear motion (see
Figure 6).

3 Mapping is generally defined as the operation of transforming some input data into other type of output
data by virtue of specific synthesis ad expressions, the so called “I/O mapping”. It is frequently used in
different domains; in the case of input devices, mapping studies the logical connection between gestural
parameters and output parameters (e.g. sounds, images, etc.)
4 In this article Fitzmaurice, Ishii and Buxton have introduced the concept of Graspable User Interfaces,
which will be later renamed by Ullmer and Ishii in [50] as TUI, i.e. Tangible User Interfaces.

 7

Figure 6: Some representative tasks proposed by Bill Buxton. On the left side target acquiring,
on the center freehand inking and on the right constrained circular motion

This set is based on the idiosyncratic character of different types of gestures and

actions, and it’s mainly focused on 2D graphical interaction. The creation of tasks that
measure user and device performances, implies the quantification of these data to
further validate evaluation models and methods. One of the most extensively used
methodology in 1D and 2D task’s quantification and evaluation is the Fitts’s Law [35],
which was originally proposed by Paul Fitts for measuring the information capacity of
the human motor systems with the following formula:

The original experiment entailed rapid back and forth displacement of a stylus

pen between two targets of different sizes and placed at different distances (see Figure
7), subjects were instructed to perform this movement as quickly as possible. Fitts’s
Law formula has been widely reformulated for different experiments [32, 42, 44, 45, 64,
90, 97, 128], and the model showed a good fit for many other types of task, such as
head movement [66, 107], distal pointing [79], dependence of target capturing time on
information load and movement precision [126], MI (Motor Imagery) ability test [25],
moving target interception and reaction time testing [68], pointing and dragging times in
GUIs manipulation [87].

Figure 7: The stylus-tapping paradigm in which Fitts' law was first demonstrated for rapid
spatially constrained movements (1954)

 8

In comparative analysis of different input control methods, one of the most
important experiments is indeed [26]. Card et al. have been using Fitts’s Law in this
experiment, to test and model performances of different controls, i.e. a mouse, an
isometric joystick, step keys and text keys; experimental task entailed text selection on a
CRT (Cathode Ray Tube) monitor, where the mouse was found to be the fastest device
amongst the others and with the lower error rate. Despite being widely used for it’s
general applicability, the Fitts’s law could not always model user performance in a
successful way. It was the case of [3] for instance, where trajectory-based interaction
needed the formulation of a more robust model to test actions like menus navigation,
drawing curves and moving in 3D worlds, i.e. the “steering law5” (see Figure 8).

Figure 8: The Steering Law as formulated by Accot and Zhai (1997)

Other comparative analysis of input technologies have used methods other than

pragmatic analysis of aimed movements, as in [63], where Jacob et al. showed that
performance with integral and separable controls was superior in the condition where
the device matched the task in integrality or separability. This experiment was mainly
focused on proving how the perceptual structure of the task matches the control
structure of the device; their conclusion suggested that a proper design of input
technologies cannot be abstract from this principle: “To design and select more effective
input devices and interaction techniques, one needs to use a deeper understanding of
task, device, and the interrelationship between task and device from the perspective of
the user” (Jacob et al., 1990). However, with the development of always more
heterogeneous type of embodied technologies and devices, new and more specific
researches questions are arising in the field of HCI, and evaluation methods have
evolved too. Nowadays direct touch control such as multi-touch and tangible interaction
are of great interest, and comparative studies are applying to this domains as well. Since
multi-touch and tangible technologies are often implemented for tabletop interaction,
studying these input methods in this domain may lead to interesting future outcomes.

5 This model is so called because the experimental paradigm used to represent these type of trajectory-
based tasks was the action of “steering through tunnels”.

 9

1.3 Tabletop interaction and input control methods

1.3.1 Historical account: early prototypes
With the rise of personal computers since 1980, real physical desktop operations

performed on a horizontal tabletop, were turned into a relative metaphor for GUI on
computer monitors (e.g Xerox Star, Macintosh 128K), thus switching the user’s
orientation from horizontally in front of a desk to vertically in front of a screen. This
transition was encouraged by the new amount of possibilities that devices such Digital
Assistants (PDAs) and new portable computers could provide to the user, i.e. high
velocity of calculation, easy and quick digital data manipulation, appealing graphical
interfaces, dynamic digital data storage, and so forth. Although fascinating and
innovative, the so called WIMP paradigm have never really overcome the operational
efficiency of a (using a Heideggerian term) “ready-to-hand” action on a tabletop or a
desk; especially when having the need of performing spatial multiplexed actions (see
point 1.2.2), mouse and keyboards could not really substitute the far broader degree of
control and gestural possibilities provided by human hands. In the early nineties, Pierre
Wellner understood this problem as well as he realized that the passage toward the
digital was indeed a crucial and an important point in evolutionary terms for human
interaction. What he proposed in [122] with his DigitalDesk (see Figure 9), was a
solution that tried to integrate both human natural actions and digital/virtual interface,
trying to “make the real desk like the workstation, instead of making the workstation
like the real desk” (Wellner, 1993).

Figure 9: Pierre Wellner interacting with his DigitalDesk (1993)

 This historical passage opened up to a new paradigm shift towards a more
embodied digital interaction, taking into account the human gestural pool of bodily
actions as a fundamental aspect, trying to improve the design of digital systems with
which users interact with and manipulate data. The benefits of an approach towards a
direct and embodied interaction with digital interfaces was discussed and evidenced
prior to Wellner’s contribution by Brown et al. in [10]. Here they wanted to exemplify
how the logic working for partitions a single physical display into a number of different
virtual displays, could be also useful when applied to input control; as stated in the
introduction of their study “a significant trend in user interface design is away from the
discrete, serial nature of what we might call a digital approach, towards the continuous,
spatial properties of an analogue approach” (Brown et al., 1990). Ever since,
investigation in digital desks and tabletop interaction has increased rapidly, especially in

 10

view of the strong and advantaging features shown in the aforementioned studies, e.g.
eliciting collaborative work and favoring spatial multiplexed control. It is in this direction
that goes the ActiveDesk6 created by Buxton and colleagues at Xerox PARC in the
nineties. This tabletop was intended to be modeled as a traditional drafting table to
support drawing activities, with which manipulating digital content retro-projected7 on a
transparent surface (see Figure 10), it was also used by Buxton, Fitzmaurice and Ishii
for their study on Graspable User Interfaces in 1995 [36]. This study will be discussed
more in details in point 1.4.1.

 Figure 10: Bill Buxton interacting with the Active Desk, University of Toronto (1992)

We can consider the aforementioned works of Wellner and Buxton as the

pioneers of the field, and their research has been surely of fundamental importance for
the experimental evolution that tabletops, multi-touch and tangible interaction had in the
future. The metaDesk8 introduced in 1997 bit MIT medialab researchers Ullmer and
Ishii in [117] (see Figure 11) it’s also another important piece of work in tabletop
interaction, that extended the principals laid in the works of Buxton and Wellner,
developing on top of them a new metaphor of interaction for a tabletop, through the use
of physical tokens called Tangible User Interfaces (TUI). With the implementation of
this physical tokens as a control to manipulate the virtual elements projected on the
tabletop, Ullmer et al. were attempting to change the “painted bits” of GUI into the
“tangible bits”of a TUI, by taking advantage of multiple senses and the multi modality
of human interaction with the real world [61].

6 http://www.billbuxton.com/ActiveDesk.html
7 Compared with the top-projection of the DigitalDesk, the rear-projection of the ActiveDesk is favouring
the sight of the user, since the physical presence of the user’s body doesn’t produce any shadow on the
surface, therefore not interfering with the digital elements displayed by the projection.
8 http://tangible.media.mit.edu/project.php?recid=81

 11

Figure 11: The metaDESK overview, on the right picture the Great Dome phicon (1997)

1.3.2 From BUILD-IT to Microsoft Second Light
 As described in point 1.3.1, Ullmer and Ishii’s metaDesk [117] had extended the
control input of an interactive tabletop with use of different physical tokens and other
controls, like the passive lens, to interact with the surface and manipulate digital data.
Furthermore, the system supported a 3D navigalbe model of the MIT campus buildings
that could be visualized through the use of a LCD screen mounted on an arm support,
with a 6DOF magnetic-field position sensor attached to the flat-panel display for
tracking its spatial position and orientation. This features are actually transforming the
space of a desk in an augmented reality experience, posing the user in a sequence of
motor and cognitive tasks that leverages their sensory-motor experience, enabling them
to conceive and understand different interaction metaphors. It is important also to notice
that with the metaDesk was introduced the back-projection technique, where the
projector is not place above the surface anymore, like in the DigitalDesk or the
ActiveDesk, but at the bottom of the tabletop and the projected images are reflected by
the use of two mirror on a semi-transparent surface (see Figure 12).

Figure 12: The metaDesk system architecture

 12

A very similar paradigm is proposed by Fjeld et al. in 1998 with their system BUILD-
IT9, where their research question is regarding wether epistemic action can be
considered to be a goal-driven or task related activity [37]. To test their hypothesis they
develop this new paradigm called NUI (Natural User Interfaces), fusing real and virtual
objects through the use of AR (Augmented Reality) as a metaphor for an interaction
“based on the real objects, augmented by computer characteristics” (Fjeld et al., 1998).
Hence, they developed a multi-modal interface made by two different surfaces (see
Figure 13): 1) a horizontal surface with a static top projection, two menus and two
areas, where users can manipulate physical pucks and interact with each other and the
system; 2) a vertical surface with a virtual quasi 3D mensional world projected in it,
where user can add and control the position of virtual object connected to the physical
pucks. However, this system, unlike the metaDesk, is using a top-projection and a front-
projection technique.

Figure 13: Users interacting with the BUILD-IT system (1998)

After metaDesk and BUILD-IT, the production of new interactive surfaces has

drastically increased and several models have been proposed and experimented, trying
to refine technological aspects and optimizing efficiency and usability of systems. It is
important to underline that, since tabletop interaction is strongly dependent on the
involved technology, the study and experimentation of tracking technologies, projection
systems, and sophisticated interaction devices has been fundamentally important to
understand how and where to improve system’s performance and user satisfaction. Due
to the parallel development of multi-touch and tangible input methods, some of the
research have been more focused on investigating direct manipulation and touch
technologies, whereas some have been more focused on tangible interaction, and some
have tried to implement both input methods into the same technology. DiamondTouch10
was introduced in 2001 by Dietz et al. in [29], it’s main technological feature was the
use of a tracking system integrated into the tabletop (see Figure 14). Infact, through a
high-signal transmitted from the surface to the receivers placed in user’s chair, touch
location information was determined independently for each user, allowing each touch
on the surface to be individually associated with a single user. Until today, this is still
the only multi-touch technology there is able to discriminate between different users.

9 http://www.fjeld.ch/hci/#paper_1
10 http://www.circletwelve.com/

 13

Figure 14: The DiamondTouch (2001)

Similar interactive tabletop technologies were introduced later, such as the

Smartskin11 [109] and the MagicTable12 [7]. However, while the DiamondTouch was
accepting only direct manipulation trough multi-touch controls, the Smartskin and the
MagicTable were making use of multi-touch input method, as well as integrating
particular kind of TUIs for specific actions and digital data handling. These interactive
tabletops were still making use of top projection, which was not integrated in the table
itself; therefore the problem of partially camouflaged projection by user’s shadows still
occurred. The top-projection technique was still used for the SenseTable13 [101], and
PlayAnywhere14 [123] introduced projection on the side, which partially solved the
problem of interface occlusion. PlayAnywhere was introduced by the Microsoft
researcher Andy Wilson in 2005, it used an IR-based (Infra Red) tracking system
located above the tabletop and it supported multi-touch interaction as well as tagged
tangible objects detection. SenseTable was introduced by Patten et al. in 2001, the
system used two WACOM Intuos tablet and a series of wireless TUIs, whose position
and orientation was electromagnetically tracked by the system via inductive sensing.
This system featured one of the first interactive tabletop musical performance
applications called Audiopad15 [102], “an interface for musical performance that aims
to combine the modularity of knob based controllers with the expressive character of
multidimensional tracking interfaces” (Patten et al., 2001). Later, in 2005 Sergi Jordà
and other investigator from the MTG (Music Technology Group) of the Universitat
Pompeu Fabra have introduced the ReacTable [72], a multi-user electro-acoustic
musical instrument with a tabletop tangible user interface.

11 http://ftp.csl.sony.co.jp/person/rekimoto/smartskin/
12 http://iihm.imag.fr/fberard/
13 http://tangible.media.mit.edu/projects/sensetable/
14 http://research.microsoft.com/en-us/um/people/awilson/
15 http://www.jamespatten.com/audiopad/

 14

The ReacTable (see Figure 15) presented different technological innovations,
such as the integration and location of all its components below the tabletop’s surface,
as well as an improved topological fiducial tracking system for TUIs detection [4],
based on the same approach introduced by Costanza and Robinson in the d-touch
system [27]. The GUIs are back-projected on the tabletop via mirror reflection; objects
and touch gestures are recognized by a computer vision system which uses a camera
positioned under the table. Since the semi-transparent surface of the ReacTable is back-
illuminated with IR light, the system allows for unique and independent detection of
TUIs tagged with fiducial markers and finger touch.

Figure 15: Some users interacting with TUIs on the ReacTable system

Other interactive tabletops have been introduced with years, proposing different

technological solution and interactive paradigms, as in the case of Ortholumen16 [104],
which was introduced by Piazza et al. in 2007 and it used a light pen based interaction.
In this system the light beam of the pen is tracked by a webcam positioned below the
transparent surface of the tabletop, and the shape of the light informs the system about
pen’s orientation, position and direction; the system could also be expanded to multiple
pen tracking, so as to enable for multi-pointer input and collaborative interaction.
Another pen based interaction system was the InfracTables17 [40], introduced by Ganser
et al. in 2005. As aforementioned, this systems supported pen interaction, as well as
different set of specific TUIs, such as ruler, eraser, calliper, ink dwell, etc. Device
position on tabletop was determined via blob detection and ID was determined through
the use of a bit code transmitted from the IR-LED mounted on the device to the
SyncBox. FTIR18 introduced in 2005 by Han in [47] was also making use of IR
technology for device detection. This interactive digital tabletop was accepting only
multi-touch input, presenting integration of component below the surface as the

16 http://www.t2i.se/projects.php?project=ol
17 http://www.icvr.ethz.ch/
18 http://cs.nyu.edu/≈jhan/ftirtouch/

 15

ReacTable, but unlike the work of Jorda et al., the surface was not back-illuminated
with IR-light, whereas single IR leds were coupled into the acrylic overlay from the
side, making part of the detection system directly integrated into the surface (see Figure
16).

Figure 16: a graphical representation of the system used by Han et al. to build their multitouch
surface

However, today’s flat LCD screen are representing an appealing technology for

tabletop research, in which they are becoming more economically affordable and, since
they do not present any cameras and projectors in the way, they can improve ergonomic
impact on the user, making it possible to actually sit at the table and interact with the
system in a more comfortable way. It is in this direction that were going the works of
Hofer et al., like the MightyTrace19 [55], the FLATIR20 [56] , or the TNT [54]. Another
interesting work is the BendDesk21, introduced in 2010 by Weiss et al. [121], this
system presents an interesting concept of hybrid interactive desk, that combines features
of horizontal and a vertical interaction on the same surface surface via a bended section.
One step forward has been made by Microsoft with the SecondLight22 introduced by
Izadi et al. in [62], which is the first interactive tabletop that is able to extend the user’s
interaction beyond the display (see Figure 17). In fact, this system is based on a
switchable projection screen, that can be made diffuse or clear under electronic control;
therefore when the screen is in diffuse mode the projection is on the surface, whereas
when it is in clear mode the projection goes through the surface. The system accepts
multi-touch input, particular types of TUIs with internal prisms for on-object projection
when the screen is in clear mode, an is also able to detect real physical objects such as
real paint brushes or translucent sheet. Indeed, all these different tabletop technologies
provide the users with many and diverse interaction options. Hence, a schema of the
gestural possibilities and interaction frameworks related with digital tabletops, would

19 http://www.icvr.ethz.ch/research/projects/closed/motiva/Technolgy/MightyTrace/index_EN
20 http://www.youtube.com/watch?v=FrO-VnDA-24
21 http://hci.rwth-aachen.de/benddesk
22 http://research.microsoft.com/en-us/um/people/shahrami/

 16

help understanding when to focus on the implementation of a particular control and how
to properly integrating different input methods into the same system.

Figure 17: An example of the Microsoft Second Light in action. In the rightmost image is
possible to see how this technology allows for simultaneous projectio on the surface and
through the surface

1.3.3 Gestures and interaction
 Tabletop interactive technologies can be considered as dichotomous systems, in
which they are both graphical displays and direct input device. For this reason they
provide the user with digital manipulation via natural hand gestures, as well as the
control of virtual objects with various type of physical tokens. With the evolution of
technology, nowadays digital tabletops can accept without problems multiple input
devices, and detect them simultaneously and independently from how many users are
interacting with the system. For this reasons, co-located and co-present collaboration are
easily supported by interactive tabletops, which have shown great potential in terms of
CSCW (Compute Supported Collaborative Work), and the benefits of hybrid input
control methods applied to tabletop interaction has been discussed in various studies [8,
50, 53, 57]. Kunz and Fjeld in [82] have proposed a small classification of the possible
types of devices and interaction related with a tabletop system (see Figure 18). TUIs,
multi-touch and pen-based interaction, seem to be still predominant input control
methods used for tabletop interactive technology. Since our work was focused on
comparative analysis of TUIs and multi-touch, the next section will be describing these
input control methods more into detail.

Figure 18: Readapted classification of tabletop interaction by Kunz and Fjeld

 17

1.4 Tabletop Input Control Methods

1.4.1 Tangible User Interfaces (TUI)
 The concept of TUI was introduced in 1997 by Ulmer and Ishii in [61], and then
also extended by the same authors in 2000 in [116]; these controls where firstly
implemented in the metaDesk (see point 1.3.1) to augment tabletop interaction; through
the use of physical objects called phicons, users could manage and manipulate digital
contents retro-projected on the tabletop surface as if they were physically extended
beyond the virtual application. However, the very first groundwork for the discussion on
this new interfaces was laid in 1995 by Fitzmaurice, Ishii and Buxton in [36], their
premises were to represent an emerging post-WIMP paradigm, concerned with
providing tangible representations to digital information and controls, then allowing the
users to actually “grasp” digital data directly with their hands (see Figure 19).

Figure 19: A graspable user interface as represented in [36]

These works where indeed inspired by Durrell Bishop, who designed a

conceptual sketch of a Marble Answering Machine23 [110] while studying at the Royal
College of Art in 1992, where incoming calls were represented by tangible objects in
shape of little colored spheres of marble. Once the answering machine had registered
the incoming message, the little sphere rolled into a bowl embedded in the machine,
than the user could pick up the sphere and place it in the identation where the
message(s) could eventually be played back (see Figure 20). In this case, the mapping of
digital contents into a physical object semantically changes the meaning of the latter,
where it actually becomes an augmented object whit a meaning other than a simple
sphere, but the sphere actually “is” the information contained in it. The Bishop’s
answering machine, the graspables of Fitzmaurice, Ishii and Buxton, and the tangible
bits of Ulmer and Ishii, can all be considered as pioneering and seminal works in the
field of tangible user interfaces, and with them they have surely exemplified two
important aspects of this technology: 1) how TUIs are potentially not limited to the
visual and aural senses, providing the user with additional haptic feedback, and then
extending the WIMP interaction paradigm of digital data manipulation to a more natural
and embodied interaction, 2) how TUIs take advantage of the human predisposition to
be active and creative with one’s hands, providing a better way of interacting with
computational applications that leverage user’s knowledge and skills of interaction
which rely on affordances of everyday, non-digital, world and its objects. This concept
is reinforced by Paul Dourish in [31], who says that the positive outcome towards this
embodied interaction paradigm, also reinforces the idea of integrating computation into

23 http://vimeo.com/19930744

 18

our everyday world, in which “tangible and social computing both capitalize upon our
familiarity with everyday world, a world of social and physical interaction” (Dourish,
2004). Another important benefit of TUIs is that they encourage two handed and
bimanual interaction [43, 73]. As previously discussed in point 1.2.2, TUIs have also
shown to improve performances at spatial layouts when the handling of different data at
the same time is required; the reasons of this benefit are extensively explained in [36].

Figure 20: A sketch of the Durrell Bishop's Marble Answer Machine (1992)

 However, since tangible interfaces have shown to be a promising technology in
HCI, many implementations have been done in different systems and in different
interaction domains, and different taxonomies have been proposed [34, 36, 58, 115].
John Frazer can be considered on of the pioneers in implementing tangible controls for
the manipulation of digital data. In fact, even before GUIs or TUIs, i.e. at the end of
1970, he had already foreseen the future application of tangible controls, by using
physical models as input devices for CAD systems in collaborative design discussions
on architecture [39]. Thinking about the technological state of that time, this system was
quite advanced, since the single cubes used as input devices where able to sense the
positioning of their surrounding neighbors. Only thirty years later, David Merrill’s
Siftables24 from MIT medialab, has shown a similar concept [96]. A similar approach to
Frazer was used in 1999 by Underkoffler and Ishii in [118]; with Urp they have
introduced a system that supported collaborative discussions on urban planning, by
mean of using physical building models and various pucks for digital data manipulation
on a luminous interactive tabletop. TUIs have been successfully used in the design and
construction of toys for children, as in the case of Topobo25, which is a robotic toy made
by different parts that can be joint together to make different and personalized
combinations. Furthermore, this toy is provided with kinetic memory, which makes
possible to record and playback physical motions and actions without having to perform
any programming with the computer; Topobo has also been proven to teach advanced
physics concepts to children as young as 5. Many TUIs are also used for AR
application, in order to connect physical objects to virtual contents that can be
visualized in an external monitor or digital screen. MADO is an example of this type of
applications, where users can build physical models by combining electrical pieces, then
connecting this model to the MADO interface to watch and explore the physical model

24 http://alumni.media.mit.edu/≈dmerrill/siftables.html
25 http://www.topobo.com/

 19

in the virtual world [92]. Another example of TUIs implementation for AR is the work
of Huang et al. Easigami26, which is a system intended to help children to develop their
visualization and spatial recognition skills, through the use of augmented reconfigurable
set of flat polygons (see Figure 21), electronically connected to a computer for 3D
model visualization in real-time [59].

Figure 21: An example of foldable TUI and their digital representation, in the work of Huang et
al. Easigami (2009)

 Tangible interaction has been often used, especially with children, to improve and
facilitate learning processes. It is the case of AlgoBlock, where TUIs have been used by
Suzuki and Kato in a tangible programming language as a computer-based educational
tool to facilitate interactions among young learners [112]. The premises of this work
were to discuss computer-based education from the point of view of situated learning
theory [11, 83] and the idea proposed by Lave et al. of LPP, i.e. legitimate peripheral
participation [83]. A survey recently conducted by Marshall et al. on embodied
interaction, have entailed experiments with children making use of both TUIs and multi-
touch controls for collaborative problem solving, producing interesting results in favor
of tangible and embodied interaction [94]. Their analysis have shown how material
qualities of the digital interface and physical objects can affect behavioral strategies
adopted by children, where using tangible devices in lieu of multi-touch led to less
aggressive strategy for objects control. Albeit Marshall et al. research is not
unashamedly referring to a comparison of TUIs and multi-touch input methods, the final
results are inevitably putting these two on different positions, showing inherent limits
and benefits of these different technologies applied to same or different interaction
paradigm. The next session will give an overview of multi-touch technology.

26 http://www.youtube.com/watch?v=QteE8F4n7is

 20

1.4.2 Touch-screen and Multi-Touch
 Touch screen and multi-touch control methods are having nowadays great rise
and interest amongst emergent novel technologies, and always more often they are
implemented in mobile devices and digital tabletops, such as Apple iPhone27 and iPad28,
or Microsoft Surface29 for instance. Some of the early and recent application of touch
and multi-touch on interactive tabletops have already been described in point 1.3.2.
However, despite seeming a very young phenomena, the creation of this technologies
and techniques is going quite far back, i.e. at least more than 40 years ago for touch
screen technology and about 25 years ago for multi-touch. It is certainly sobering how
long this technology took from inception to ubiquity; an article wrote by Bill Buxton in
2008 helps understanding this issue [24]. Perhaps, we can consider one of the earliest
touch sensitive devices ever implemented for manipulation and control of digital
signals, the Electronic Sackbut30 developed by Hugh Le Caine between 1945–1973.
This instrument featured an innovative control of waveforms and timbre through a
sensitive touch pad, that was mounted on top of a regular organ keyboard and controlled
by the left hand. Between the mid 1960s and the early 1970s the IBM and the
University of Illinois started to develop and disclose the early touch technology
prototypes making use of touch input device to interact with computers; it is the case of
PLATO IV31 system (see Figure 22), a touch sensitive computer used in grade-school
classrooms for education assisting.

Figure 22: PLATO IV terminal with touch-screen and plasma display (1952-74)

By the late 1970s Chris Herot and Guy Weinzapfel from the Architecture Machine
Group at MIT, realized one of the first touch sensitive screen that could not just sense
positioning of fingers [49], but through the use of a mounted touch-screen overlay on
strain gauges, the device was able to sense vector information in six dimension, i.e.
force in x, y and z as well as torque force on the same axis. More example of early
touch-screen technology and touch sensitive devices are illustrated by Bill Buxton in
[12].

27 http://www.youtube.com/watch?v=grTCDFbhKMU
28 http://www.youtube.com/watch?v=y2Hz8dhQw8Q
29 http://www.microsoft.com/surface/en/us/default.aspx
30 http://www.hughlecaine.com/en/sackbut.html
31 http://en.wikipedia.org/wiki/Plato_computer

 21

 However, the aforementioned technologies were partially limited by the fact that
they were only able to sense one point of contact per time. As mentioned in [12], the
very beginning of research on multi-touch technology goes back to the study of tactile
sensors for robotics. In 1986 Paul McAvinney introduced an optical sensing device
called the Sensor Cube, which used cameras placed across the surface of the display to
detect touch location and angle approach of up to three fingers [95]. Before that, in
1984, the same year the first Machintosh computer was introduced, Buxton et al.
developed a touch tablet capable of sensing an arbitrary number of simultaneous touch
inputs, reporting both location and degree of touch for each [84]. Due to the interactive
potential shown by this first prototypes, a great interest and advanced researches born
towards the various possibilities that could be expressed by multiple finger’s gestural
pool, in relation with the use of multi-touch input control method for the manipulation
of various types of parameters. Although not using direct contact on a surface, some of
this potential was already shown by Myron Krueger in 1983 in his works Video/Place32
and Video/Desk33; this pioneering works [80, 81] were really pushing the boundaries of
capturing human gestures, including a widely implemented type of gesture in modern
touch-screen sensitive devices, such as the pinch gesture to scale and translate objects
(see Figure 23).

Figure 23: Myron Krueger's pioneering work VideoPlace, early work using rich interaction
gestures (1974)

 Many studies on hand gestures and bimanual input control applied to interactive
systems and multi-touch devices had been carried out by Bill Buxton and different
authors [17, 22, 23, 85], to investigate the benefits of interaction paradigm that could
advantage the use of human gestural capabilities. In particular [17] highlights how the
combination between a conventional device used for GUIs direct manipulation (e.g. a
keyboard or a mouse) and a multi-touch control device, could eventually improve and

32 http://www.youtube.com/watch?v=dqZyZrN3Pl0
33 http://www.youtube.com/watch?v=d4DUIeXSEpk

 22

increase the range of direct manipulation and actions a user is able to perform. This was
achieved on purpose by creating a keyboard which has a multi-touch panel integrated
into the bottom, which a user could simply “flip” to have access to the multi-touch pad,
and take advantage of it’s features when richer and more complex simultaneous finger
gestures were required from the application, as in the case of a virtual mixer for example
(see Figure 24).

Figure 24: The Tactex's Flip Keyboard

 This work shows the importance of having a versatile control, that might
eventually allow a user to chose more naturally and more efficiently the way he or she
wants to interact with a system. However, according to Buxton [18], when we are
designing or choosing a control method, a fundamental axiom that we have to bear in
mind is: “everything is best for something and worst for something else” (Buxton,
2008). Hence, we will see in the next section, how in tabletop interaction, multi-touch
control compared with TUI and other input devices, has shown to be a good input
control method for some actions and bad for some others. Especially when very precise
gestures were needed, multi-touch has been found to be more error prone with respect to
the other types of control. Of course, this results were not only dependent on physical
characteristic of the controls, but they were also dependent on the design of the
application and the type of tasks that user was required to accomplish.

 23

1.5 Comparative analysis of TUI and Multi-touch

1.5.1 TUI and Multi-touch differences and similarities
 As seen in previous studies [26, 63, 89], mouse input device was used as a good
reference for comparative studies on different input control methods, due to his large
implementation and use in interacting with GUIs. However, since the tendency has
changed in the last years, different input devices have become more diffuse and used in
HCI and the focus of research has been shifting from conventional to novel
technologies, such as TUIs and multi-touch. As input control methods, tangibles and
multi-touch present many similarities (see Table 1), and since both devices support
bimanual interactions and spatial multiplexed, it is natural to inquire whether one
technology can present the same advantages and quality of the other, and to what extent
they can be transferable.

Table 1: Differences and similarities between TUI and Multi-Touch

Generally, two issues become relevant when the case is analyzed from the
perspective of multi-touch: 1) since multi-touch control does not have a specific
physical form, it cannot be categorized as a specialized or non-specialized device, 2)
can multi-touch enable the same motor-cognitive activity elicit by TUIs? Two major
differences shown by this technologies are partially answering this question:

• When user is interacting with a system using multi-touch control, he or she
cannot actually lift or hold objects with their hands, making the manipulation
space 2D and not 3D as in the case of TUIs; we see, for example, how this
affected grade of aggressiveness in interaction strategies among children in [94].

• Multi-touch controls are not providing tactile feedback, then they are relying

more on visual feedback than TUIs; some implications of this issue are
discussed by Buxton in [18].

1.5.2 Previous works
Tuddenham et al. compared user’s performance using TUIs, multi-touch, and a

mouse-and-puck input devices for a task implying precise shape acquiring and matching
[114]. Their quantitative analysis demonstrated that TUIs were easier and faster to
acquire, and more accurate to manipulate with respect to the other two interfaces. One
phenomena pertaining multi-touch interfaces emerged as problematic issue when users
had to cease the contact with the surface to submit their performance, i.e. the so called
“exit error”, which was principally caused by the slight shift of a contact point, such as
lifting the fingers off the screen. For this reason, the multi-touch interfaces have shown
to be less effective for fine-grained controls than TUIs. Lucchi et al. compared tangible

 24

and multi-touch interfaces for virtual/physical small-scale walls and shelves sorting
[86]. Their quantitative results have shown that generally tangibles are faster and more
accurate for spatial layout tasks, but also that multi-touch could perform better under
certain condition, especially when users could take advantage of some features not
provided by tangible objects, such as “undo”, “select all” or “lazo selection”, that could
simplify and speed up user actions under certain circumstances (see Figure 25).

Figure 25: Some gestures performed from subjects during the experiment of Lucchi et al., image
on the right side shows the "lazo selection" option provided with multi-touch control

Furthermore, quantitative analysis confirmed how tangible interfaces were easier

to acquire due to their familiarity, but authors have proposed the design of application
requiring less complex gestures for multi-touch control to reduce this gap between these
two control methods. Kirk et al. in [78] conducted case studies of the design of two
hybrid interactive surface technologies: VPlay and Family Archive. They have
investigated important aspects in designing such applications: 1) How to detect and
rationalize key features of digital and physical controls in relation to specific
applications? 2) Once rationalized, why choosing one or the other? 3) How the physical
world should be emulated into the digital domain? What they have suggested is that
TUIs are particularly advantaging in applications where eyes-free control and rich or
accurate control are needed. However, multi-touch shows indeed some advantaging
features proper of digital domain, that simply cannot be achieved with tangible objects
for obvious physical reasons, such as dynamically copying or deleting an object.
Creating interaction paradigm that implies manipulating emulation of physical objects
in 3D world on a 2D surface can be challenging, but designers have to be prepared to
even break the law of physics to provide users with an effective interaction. In this
sense, their work takes an important step for future research in tangible and multi-touch
interfaces. Terrenghi et al. have compared in [113] the use of physical and multi-touch
interfaces for puzzle solving and photo sorting tasks. Their findings are showing
fundamental differences between this two control methods, in which, even though they
have designed the digital tabletop to facilitate bimanual interaction, participants were
actually more prone to use bimanual interaction with physical objects than with digital
ones. Also, physical objects have shown to elicit more frequent use of the non dominant
hand, providing the frame of reference to the dominant hand. However, not many
experiments in this field have investigated the use of TUIs and multi-touch for the
control of real-time video games, or more generally real-time applications, where new
interesting results and implications may arise.

 25

1.6. RTI in HCI and video games

1.6.1 Defining RTI
The application used for the experiment described in this thesis was developed

in the context of real-time interaction video games. For this reason the next paragraphs
will try to explain the concept of RTI and mark its differences with respect to other
types of interaction. Since this concept is not well defined yet, the basic assumption on
which it is intended to be built, will use a mixture of studies on interactivity and video
gaming as a reference for the construction of the theoretical framework.

1.6.2 Main concepts and ideas
While a broad research has been carried out regarding the meaning and the

implication of interactivity and interaction in different fileds, like communication [77,
108], HCI [30, 32], virtual reality [100, 111], humanities and arts [103], digital music
[70, 71], less attention has been paid on how and when in time this interaction should
happen, as well as the importance of the role of time in the interactive process. First
studies trying to frame the importance of time relationship between user and computer
in HCI appeared in the eraly ninties [48]; althought being mainly focused on technical
issues related to usability and design problems, this study raised the important question
of user’s asynchronous actions in relation with the sequential nature of actions imposed
by the “old style interfaces” of computers. What emerges form this reflection is that,
computer time processes and human temporal pattern of actions has to be naturally
related to each other in order to produce a better or more “realistic” outcome in the
interactive process. The notion of RTI (Real-Time Interaction) tries to delineate a
theoretical framework, on which trying to analyze and improve the natural process of
interactivity between users and computers. Since our actions in the world follows real
time rules and constraints, i.e. we cannot go back in time for instance (even though
Mallet34 would not agree on this point [93]), it would be resonable under certain
circumstances to interact with systems that can generate informations following the
same rules. It is important to understand prior of everything that the concept of RTI
does not take into account velocity as a key issue; in real-time generation of contents
and data, what matters is not that they are generated in the fastest way possible, instead
the word real-time in this case referes to a simulation that proceeds at a rate that
matches that of the real process that it is intended to be simulated. An example that can
help explaining the notion of real-time within interaction, is related to VR (virtual
reality), in fact according to Steuer, amongst one of the basic requirements of VR
systems is the one of having a computer capable of generating animation and data in
real-time [111]. The capacity of a system to generate contents “on the fly” it’s indeed an
important quality to achieve a condition of RTI; for example, while interacting with a
VE (Virtual Environment) in a VR experience, the user would expect visual contents
and perspectives to change dynamically, according to his head movements and changes
in point of view. However, dynamic generation and modify of contents in RT do not
have to be necessarily as fast or as quick as possible.

34 Ronald Mallet was a professor of physics at the University of Connecticut since 1975. He is best
known for his scientific position on the possibility of time travel.

 26

1.6.3 RTI in video games
For instance if the VR system is emulating a real-life tennis match (see Figure

26), one would expect his virtual oppenent and the virtual object represented in the
virtual environment to respond according to time that resembles the one of real-life or
similar. In this case, having a virtual opponent or a tennis ball that goes much faster than
one’s natural times of reaction, would produce a stressful interaction and non plausible
simulation. Steuer also defines immediacy of response in RTI as a very important
characteristic to generate the conditions of interaction, describing a sort of criteria that
define grades of interactivity of media, based on their capacity to be as more
sumiltaneous and immediate as possible [111]. According with the aforementioned case
of the simulated tennis match, this criteria does not hold anymore.

Figure 26: Virtua Tennis, an example of real- time videogame sport simulator (Copyright of
SEGA Corporation)

One of the main characteristics of real-time video games is that time progresses

continuously according to the game clock. Players do not perform actions in a
sequential fashion, instead they perform various actions simultaniousely and
continousely in time; for instance, in RTI it’s not possible to “undo” an action.
Furthermore, objects and opponents present in the game are behaving according to real-
time conditions, therefore they may act or react to player’s moves at any moment. Time
management and physical coordination are fundamental in this type of interaction. Real-
time gameplay is often used in simulation video games for entertainment or training,
e.g. flight simulators. For instance, the notion of RTI perfectly fits to the concept of
flight simulators, since what is intended to be achieved in this type of video games, is
the reproduction of real flying conditions as more realisticly as possible. To achieve this
particular conditions, it is of fundamental importance that all actions occurs in real-time,
in an environment that resembles time and physical constraints of a real life
environment. However, not all the video games or appliaction that are designed
following a RTI approach, must compulsorily match the condition of real life. For

 27

instance, online RPG such as “World of Warcraft”35 (see Figure 27) and many other
real-time strategy video games, do not necessarily follow the real physical and
gravitationl rules that hold in the real world. However, the interaction between players
in this type of video games happens in real-time, since time progress cannot be stopped
and the virtual environment behaves and changes indepentently if the players are
playing the game or not.

Figure 27: Worl of Warcraft RPG game online (Blizzard Entertainment)

Due to the sequential nature of computing, game time in video games is actually

subdivided into discrete units or intervals, but these are typically so small to end up
being imperceptible to the player. Therefore, even though the actions in game time are
happening in a sequential and discrete fashion, at high rates they are perceived as a
continuum. The notion of RTI might be confused with RTC (Real Time Computing),
where the concept of "real-time constraint” is associated with operational deadlines
from event to system response. However, the realtionship between agents and time
constraints in RTI is similar to the one we find in RTS (Real Time Systems), which are
often OO (Object Oriented) modeled and operate under real-time constraints; in 1998
Nielsen et al. proposed a RTS made by two separate but complementary levels, i.e.
functional-level where a collection of objects defines the system’s structure and
behavior, and a constraint-level where a set of interaction constraints define the way
these objects may interact with each other [99].

35 http://eu.battle.net/wow/en/

 28

 29

2. SYSTEM DESIGN

2.1 RTI Application in Tabletop Interaction

2.1.1 Design Goals
 As shown in previous studies [78, 86, 94, 113, 116], interactive digital tabletops
are particularly suitable to perform studies on comparative analysis of TUIs and multi-
touch, in which they can easily afford and implement both interfaces on the same
surface. As previously said, most of the comparative analysis of these control methods
have been done using non RTI applications, and little attention has been paid by the
scientific community towards the possibility of testing them in a RTI context. For this
reason, this study expressly focuses on understanding the implications of comparing
TUIs and multi-touch controls in a tabletop video game interaction context, under RTI
rules and constraints. In order to analyze both controls performance and answering to
our research questions, two “video game style” RTI applications have been designed
and programmed, and subsequently implemented in an interactive tabletop system. To
keep the graphical background very simple and clear for the subjects that would have
been taking part to the experiment, the graphical style chosen to design the application
was based on the simple aesthetic character of the 1970s, 1980s arcade video games.
Since the experiment was build to test both tangible and multi-touch control in a video
gaming performance, through parameters such as accuracy, precision and rapidity (see
point 3.4), two classical arcade video games have been regarded as the most
appropriate model on top of which developing our application, i.e. the classical Atari
Pong36 and the Arkanoid37 (see Figure 28).

Figure 28: Two screenshot from the Atari Pong (left) and the Arkanoid (right) video games

Generally, video games of this kind are requiring the user to intercept or deflecting

moving targets by performing rapid ballistic movements and accurate gestures;
therefore the behavior and the difficulty of the game have been modelled according to
the Fitts’s law, for the creation of an index of difficulty [35], and to the experimental
results on target interception and reaction time illustrated by Brenner et al. in [28, 9] and
Georgopoulos et al. in [105], taking into account issues of speed coupling, stimulus

36 http://www.pongmuseum.com/
37 http://www.arkanoid.com/

 30

dependent reaction time, time planning, visuo-motor delay, compensation for latency,
ipsilateral/contralateral area and speed-accuracy tradeoff. Two applications were then
programmed for two different task to be performed in the experiment:

• application for Task1 was designed and programmed for target deflection and
hit, to test performance as the product of accuracy and precision (see Appendix
C, 1.1, 1.2);

• application for Task 2 was designed and programmed for target interception, to

test performance as the product of precision and rapidity (se Appendix C, 1.3,
1.4).

Once programmed, the applications were then implemented into the ReacTable

hardware and integrated into the reacTIVision software as described in the next points.

2.1.2 Hardware
 The hardware setup used in this experiment was the classical ReacTable set up
(see Figure 29), consisting of a round table with a luminous acrylic transparent surface,
measuring 90 cm in height with a diameter of 95cm. The whole structure was made of
resistant aluminium covered with black plastic on the lateral perimeter to avoid
environmental light penetrating inside.

Figure 29: The ReacTable system overview

The electronic part of the system consisted of two IR lights, projector and a

camera to be connected to the video I/O of a computer. The projector used for this
experiment was a BenQ MX710 using DLP technology, with a native resolution XGA
of 1024 x 768 and a noise level of ≈30.0 db; all the projected images were reflected on
the back of the surface through the use of a mirror positioned in front of the projector.
The camera used was an Allied Guppy38 F-033B/C fireware camera, with a Sony
ICX424 CCD sensor and a frame resolution up to 60 fps. Two small IR light were

38 http://www.alliedvisiontec.com/us/products/cameras/firewire/guppy.html

 31

placed at the bottom of the structure to permit the camera to capture fingers and fiducial
images from the transparent surface. A pair of regular studio speakers were used to
provide sound feedback. One piece of acrylic tagged with a fiducial marker was used to
implement the tangible control into the system; the fiducial marker placed at the bottom
of the object was part of the basic “amoeba” set provided with reacTIVision software
(see Figure 30). Detailed implementation of controls and software specification are
described in the next point.

Figura 30: A basic "amoeba" fiducial set provided with reacTIVision software

2.1.3 Software
 The fingers and object tracking software, as well as the two applications
programmed in Processing 1.2.139, run on MacOSX Leopard version 10.5.8. Finger and
fiducial marker detection was done using the reacTIVision40 tracking library [4, 74, 75],
which analyzes black and white image, returning a list of fingers identified as “f” and a
list of markers each one identified with its single ID (see Figure 31).

Figura 31: A visualization of the camera tracking system of the reacTIVision software

39 http://processing.org/
40 http://reactivision.sourceforge.net/

 32

Information about position, angle, speed and acceleration were extracted via
TUIO41 library in Processing for both fingers and fiducial markers (see Appendix C),
then mapped for the control of virtual objects in the following way (see Figure 32):

• TUI: direct mapping into virtual object of x, y and angle parameters extracted
from fiducial markers

• Multi-touch: determining the center of the virtual object by calculating the

euclidean distance between the two fingers; angle calculated in radians using
the center of the virtual object as the origin point

Figura 32: A screenshot from the experiment showing the mapping strategy for the two diferent
controls

The two RT applications were programmed in Processing 1.2.1 with the integrated

use of the following libraries (see Appendix C):

• TUIO library for finger and fiducial tracking

• Processing OpenGL and Javamediax42 for graphic rendering

• Fisica43 library for Processing 1.2.1, was used to create the physical models; the

library was created by Ricard Marxer for Processing programming environment

• Minim44 audio library for Processing 1.2.1 was used for the generation of sound
effects in the game environment

41 http://www.tuio.org/?processing
42 http://processing.org/reference/libraries/index.html
43 http://www.ricardmarxer.com/fisica/
44 http://code.compartmental.net/tools/minim/

 33

 34

3. METHODS

 The following experiment has been created to assess gaming performance in a real-
time tabletop video game context, described as accuracy-precision for Task 1 and
precision-rapidity for Task 2, with the use of both tangible and multi-touch input
control methods. Qualitative data regarding usability, efficiency, effectiveness,
satisfaction of controls and user experience, have been gathered trough post-test and
interviews. The experiment was based on a task oriented performance, and aimed at
answering the following research questions:

• RQ1: Is there any significant difference between tangible and multi-touch in
performing accurate and precise gestures in a real-time tabletop video game
context?

• RQ2: Is there any significant difference between tangible and multi-touch in

performing precise and rapid movements in a real-time tabletop video game
context?

3.1 Experiment Setup and Protocol

The experiment involved 12 subjects, the design used a within-subjects repeated-
measures. Each of the 12 subject matched both the two different tasks (see Figure 33)
using each of the two input technologies: tangible and multi-touch. The experiment was
split in two sessions; in each session the subjects had to repeat both Task 1 and Task 2,
using one of the two control methods. A counterbalanced AB, BA method was used to
determine what type of control the subject should have in the first session and what in
the second, so as to avoid order effects. During the experiment, score, accuracy,
precision, rapidity and reaction time were measured; at the end of each session,
subjective report on comfort, ease of use, satisfaction and user experience were taken.

Figure 33: Two different tasks of the experiment, on the left side the target deflection Task 1,
requiring accuracy and precision, on the right side the target interception task requiring
precision and rapidity.

 35

The subjects worked with one standard ReacTable puck and direct multi-touch

input control. After a short training/warming up session where subject had the
possibility to play with the same application of the experiment, they where asked to
perform the real tasks with ≈2-3 minutes rest between one task and the other. Each task
lasted ≈5 minutes; during the first session, a pre-test was filled in by the subjects at the
beginning of the session and a post-test was filled at the end; the second session only
implied the post-test at the end.

The average time of each session was ≈45 minutes (1 hour and 20 minutes for
the whole experiment, i.e. session 1 + session 2). A training/warming-up phase was
provided to all the subject before starting the completion of the tasks; this part of the
session allowed them to get acquainted with the system’s interface before starting the
real experiment. The stages were structured as follows:

• Subjects were received and guided to a desk. Once there, they were asked to
read and eventually sign a consent form of authorization for the academic use
of the data generated during the experiment (duration: ≈5 min)

• If agreed with the consent form, subjects filled in the pre-test questionnaire

(duration: ≈5 min)

• Training/Warming-Up phase: Subjects were guided to the ReacTable to start
the experiment, where they received information about the tasks and the type
of control to use. Further information were displayed on the ReacTable at the
time the application started. Then, the subjects had a short period of time to
practice and to get acquainted with the interface, the applications and the
control before the beginning of the real tasks (duration: ≈4-5 min)

• Task 1: the subjects started the session with ball deflection and target hit;

before the time elapsed, the subjects received a tone which was warning them
that 10 seconds were left before the end of the task (duration: ≈5 min)

• Rest Phase: Subject were allowed to rest for a short period of time before

proceeding to the next task (duration: ≈2-3 min)

• Task 2: the subjects continued the session with target interception; before the
time elapsed, the subjects received a tone which was warning them that 10
seconds were left before the end of the task (duration: ≈5 min)

• End of tasks: subjects were asked to leave the ReacTable and guided to a desk

to fill in the post-test questionnaire.

• Subjects filled in a post-test questionnaire. The subjects were provided with a
series of adjectives to choose, with which they could describe their experience
(see Appendix B, 1.2). Then, they had to indicate the three most preferred
amongst the ones previously chosen, and discussed about these preferences in
the post interview (duration: ≈5 min)

 36

• Interview: subjects were guided to a specific sector of the room to be

interviewed; after a brief talk about their experience and their opinion about the
control used, subjects could finally leave the room for the end of the session
(duration: ≈10 minutes)

3.2 Sample

A total of 12 volunteer subjects, with a mean age of 26.25 y/old, all males, 2 left

handed, 10 right handed, with previous experience in using the ReacTable and multi-
touch technology, have participated to the experiment. The subjects were collected
through convenience sampling within the department of Audiovisual Technologies at
the UPF (Universitat Pompeu Fabra). Each subject was exposed to both conditions
(repeated measures), repeating the same tasks two times, one time per each input control
method. Type of controls to be used first or second where counterbalanced according to
the following criteria:

• Subjects with odd ID: session 1–Tangible, session 2–Multi-touch

• Subjects with even ID: session 1–Multi-touch, session 2–Tangible

3.3 Task Design

The tasks entailed to play two real-time tabletop video games, demanding for
different specific skills in order to be successful in performance, i.e. accuracy and
precision for Task 1, precision and rapidity for Task 2. After a short practice session,
the subjects had ≈5 minutes to accomplish each task (i.e. ≈10 minutes for both);
between the tasks, the subjects were allowed to rest for a time of ≈2-3 minutes. The
tasks to be performed are described as follows:

• Task 1: accuracy and precision required; subjects had to intercept a virtual ball
with a virtual paddle controlled through tangible or multi-touch input, then try to
deflect the virtual ball towards a series of targets displayed in on the surface at
random position in order to hit them. Their task was to hit as many targets as
possible and always try to be as precise and as accurate as possible. Any time a
target was hit, the score displayed at the bottom of the surface was increased,
and a new target appeared at new random position. If the target was missed, an
error was registered (i.e. missed shot + angular distance from the target) and a
new virtual ball was generated for a new attempt; this process was continuing
until the target was successfully hit. The size of the virtual ball was always
10px. Four different target size were used for the target to be hit with the ball,
i.e. 10px, 15px, 25px, and 30px; three different displacement from the center of
the surface on the X axis, i.e. 22px, 112px and 212px on both left and right side;
four different displacement from the center of the paddle towards the top of the
surface on the Y axis, i.e. 100px, 150px, 250px, 350px. Target position, size and
displacement were randomly generated during the task for each subject (see
Appendix C). A white circular line was delimiting the area in which the subjects

 37

where free to move with the controls and eventually reduce the ID of 50px in
both X and Y axis directions, the center of this area was displaced 218px on Y
axis from the bottom of the surface. The subjects were not allowed to move the
virtual paddle outside this area; if tired at wrist or at the forearm, they where
eventually allowed to change their hands while playing. However, they were not
allowed to interact with the controls using any kind of bimanual strategy.

• Task 2: precision and rapidity required; subjects had to intercept moving

circular targets dropping down from the top of the surface, with a virtual paddle
controlled through tangible or multi-touch input. Their task was to intercept as
many circular targets as possible and always try to be as fast and as precise as
possible. Any time a target was successfully intercepted, the score displayed on
the sides of the surface was increased and the distance of the paddle from the ball
at the moment of interception was registered (i.e. absolute distance from ball).
Target size was always 15px. Three different target starting position from the
top-center of the surface displaced on the X axis were used, i.e. 112px, 162px,
212px on both left and right side. Nine different speeds at which the circular
targets moved toward the bottom of the surface, were divided for three different
blocks of time during the 5 minutes of the task: 1) first 2 minutes, 600px/sec,
800px/sec and 900px/sec; 2) minutes 3-4, 1000px/sec, 1100px/sec, 1200px/sec;
3) last minute, 1300px/sec, 1400px/sec, 1500px/sec. Three different intervals of
time at which the target appears were used, i.e. every 2sec, every 4sec and every
8sec. Target starting position, speed and interval of appearance were randomly
generated during the task for each subject. A white cross was drawn at the
center and displaced 218px on Y axis from the bottom part of the surface. Each
time the subjects had performed interception movement (often sliding), whether
they have intercepted or not the target, they were required to come back to the
cross and keep a homing position until the next target appears. If tired at wrist or
at the forearm, the subjects where eventually allowed to change their hands
while playing. However, they were not allowed to interact with the controls
using any kind of bimanual strategy.

3.4 Measures
• Pre-test questionnaire: demographics, tangible and multi-touch technology

knowledge, ReacTable knowledge, video game playing frequency, video game
playing enjoyment, preferred hand, junctions or eyes injuries or pathologies (see
Appendix B, 1.1).

• Post-test questionnaire: usability test to asses comfort, ease of use and satisfaction

of the control used, based on the Microsoft-Desirability Toolkit [5] (see Appendix
B, 1.2).

• Post-test interview to assess additional qualitative information about user

experience (see Appendix B, 1.3)

 During the experiment, quantitative data regarding the gameplay were
registered and plotted on a log file in real-time. These data were including several
information about the gameplay and various parameters of both the two applications
used in the two different tasks. Information plotted for Task 1 were: paddle rotation,

 38

paddle position on Y and X axis, number of contact of the ball with the paddle, target
size, target position on X and Y axis; in this case the paddle angular direction (Real
Angle), the distance of the paddle from the target and the target size were used to
calculate the target angular size (Target Angle) to subsequetly calculate the performance
in Task 1 as follows:

• Task 1: Performance = TargetAngle – RealAngle. The closer to 0 is the value,

the better the performance. Error value could be positive or negative according
to if the target has been missed on its left (negative) or right (positive) side.

 Information plotted for Task 2 were: paddle position on X and Y axis,
paddle reaction time, paddle speed, target initial position (ballX), target speed (ball
speed), paddle contact with the target (interception). While target speed was used to
calculate the level of difficulty of the task in real-time, paddle position and and target
position at the moment of interception were used to calculate the performance in Task 2
as follows:

• Task 2: Performance = - abs (Distance From Ball). The closer to 0 is the value,
the better the performance. Error value could be only negative in which,
whether the target was missed on left or right side, the error was always
calculated as the absolute distance of the paddle from the ball.

 Information on reaction time were used to perform an independent analysis
on responsive performance of subjects with the use of the two controls, in order to
obtain additional results and further investigate possible interesting outcomes.

 39

 40

4. RESULTS
 We have compared performances of accuracy-precision and precision-rapidity
in a tabletop RTI video game context, according to one group of subject exposed to two
different conditions per two different tasks (see Figure 34): TUI, Accuracy-Precision
(T-AP); TUI Precision-Rapidity (T-PR); Multi-Touch, Accuracy-Precision (MT-AP);
Multi-Touch, Precision-Rapidity (MT-PR). The data were collected through a log file
implemented into the application programmed for the experiment (see Appendix C).

Figura 34: Experimental groups defined by conditions and tasks

 Additional qualitative information on usability and user experience were

gathered through post-test and interview, according to the methodology shown in [5]
(see Appendix A). The data extracted by the log file were calculated and transformed in
Python 2.7, then processed using SPSS for the statistical analysis of both performances
in Task 1 and Task 2. Due to not total completion of the experiment, subjects 4 and 10
have been filtered out from the final analysis of Task 1 and subjects 6 and 12 have been
filtered out from the final analysis of Task 2, actually decreasing the number of useful
cases in both experiments from 12 to 10. Hence, a paired-samples t-test was performed
to compare means of the dependent variables within samples in Task 1, showing
significant difference between tangible and multi-touch conditions. A Wilcoxon test
was performed to compare means of the dependent variables and reaction time within
samples in Task 2, showing significant difference between tangible and multi-touch
conditions. The effect of target size, target distance and target angle on the dependent
variable in Task 1 was evaluated by applying a Pearson correlation, showing a strong
significant correlation only between performance and target angle, a weak significant
correlation between performance and target size and no significant correlation with
target distance. The effect of target starting position (ball X), target speed and difficulty
on the dependent variable in Task 2 was evaluated by applying a Spearman correlation,
showing significant correlation between performance and all the three variables.
Difficulty in Task 2 was calculated as: initial distance[ball X]*target speed. Finally,
correlaiton analysis between performance and variables deriving from demographic test
failed to show any significant effect on the dependent variables.

 41

4.1 Task 1: Accuracy-Precision
 Figure 35 shows the results of Task 1. A paired-samples t-test (two-tailed) was
conducted to compare mean performances of each subject expressed as accuracy-
precision in tangible and multi-touch conditions. There was a significant difference in
performance between tangible (M=0.49, SD=1.17) and multi-touch control (M=-0.94,
SD=1.71) conditions in favor of tangible control; (t(9)=2.68, p<0.05) (see Appendix A,
1.1, table 2, 3). A one-way ANOVA was conducted to compare the effect of controls on
performance for tangible and multi-touch conditions. There was a significant effect of
controls on performance for two conditions (F(1, 1625)=19.57, p<0.01) (see Appendix
A, table 4).

Figura 35: Mean performance for the same group under Tangible and Multi-touch condition. A
significant difference was found between the two conditions (t(9)=2.68, p<0.05). An ANOVA
between the two groups also revealed significant difference (F(1, 1625)=19.57, p=<0.01)

4.1.1 Correlation analysis between Performance and Target Size,
Target Distance, Target Angle
 A Pearson product-moment correlation coefficient was computed to assess the
relationship between performance and target size, target distance and target angle (see
Appendix A, 1.1.1, table 5). There was a weak positive correlation between overall
conditions performance and target size (r=0.06, n=1627, p<0.01); a significant strong
negative correlation was found between overall conditions performance and target angle
(r=-0,61, n=1627, p<0.01), where the increasing of target distance and its decreasing in
size, generally led to a decreasing in performance (see Figure 36). No significant
correlation was found between performance and target distance (p=n.s.).

 42

Figura 36: Pearson's Correlation between Performance over Target Size (bottom) and Target
Angle (up)

Independent correlation analysis for tangible and multi-touch conditions revealed a
stronger negative correlation between performance and target angle in tangible
condition (r=-0.71, n=853, p<0.01) than in multi-touch condition (r=0.52, n=774,
p<0.01); no significant correlation was found with target size and target distance

 43

(p=n.s.) (see Appendix A, 1.1.1, table 6). A scatterplot summarizes the results (see
Figure 37).

Figura 37: Pearson's Correlation between Performance and Target Angle in Tangible (up) and
Multi-Touch (bottom) conditions

4.2 Task 2: Precision-Rapidity
 A Wilcoxon Signed Ranks test was conducted to compare mean performance for
each subject expressed as precision-rapidity in Task 2 between tangible and multi-touch
conditions. The test showed that there was a significant difference in performance

 44

between tangible (M=-57.8, SD=59.48) and multi-touch control (M=-63.56, SD=59.44)
conditions in favor of tangible control; (Z=-1.98, P<0.05) (see Appendix A, 1.2, table 7,
8). The results of Task 2 are showed in Figure 38.

Figura 38: Mean performance for the same group under Tangible and Multi-touch condition. A
significant difference was found between the two conditions (Z=-1.98, P<0.05)

4.2.1 Correlation analysis between Performance and Target Speed,
Target Starting Position, Difficulty.
 A Spearman Rho correlation coefficient was computed to assess the relationship
between performance and target speed, target starting position (ball X) (see Appendix
A, 1.2.1, table 9). There was a weak positive correlation between overall conditions
performance and target starting position (r=0.12, n=1714, p<0.01), the result is
summarized in Figure 39. A significant strong negative correlation was found between
overall conditions performance and target speed (r=-0.68, n=1714, p<0.01), where a
higher target speed corresponded in a lower performance (see Figure 40). Independent
correlation analysis for tangible and multi-touch conditions showed a slightly stronger
negative correlation between performance and target speed in tangible condition (r=-
0.68, n=870, p<0.01) than in multi-touch condition (r=-0.67, n=844, p<0.01) (see
Appendix A, 1.2.1, table 10).

 45

Figura 39: Spearman's Correlation bewteen performance and ball starting position. The plot
shows the performance in the two conditions, where is possible to see how tangible generally
outperformed multi-touch. Also, the plot shows the difference in performance between the
extreme left area of the surface (300) and the rightmost one (700), where a better performance
was produced in the latter. This is probably due to a majority of right handed subjects, where the
effect of the performance in the contralateral area was better than in the ipsilateral one.

Figura 40: Spearman's Correlation between Performance and Target Speed

 46

4.2.2 Reaction Time
 An additional analysis was carried out on mean reaction time for both tangible
and multi-touch conditions; the results are shown in Figure 41. A Wilcoxon Signed
Ranks test was performed finding significant difference in mean reaction time between
tangible (M=476.32, SD=24.77) and multi-touch control (M=483.73, SD=22.24)
conditions in favor of tangible controls; (Z=-1.98, P<0.05) (see Appendix A, 1.2.2, table
11).

Figura 41: Mean reaction time for the same group under Tangible and Multi-touch condition. A
significant difference was found between the two conditions (Z=-1.98, P<0.05)

A Spearman correlation analysis was performed to assess relationship between

reaction time and target speed, target starting position (ball X) (see Appendix A, 1.2.3,
table 12). A moderate negative correlation was found between overall conditions
reaction time and target speed (r=-0.26, n=1714, p<0.01), where a higher target speed
elicited a shorter reaction time; a weak negative correlation was found between reaction
time and target starting position (ball X) (r=-0.08, n=1714, p<0.01); the scatterplot
summarizing these results are shown in Figure 42.

 47

Figura 42: Spearman's Correlation analysis for Mean Reaction Time over Target Speed (up)
and Target Starting Position (bottom)

 48

4.3 Post-Test
 Words selected by participants using the readapted version of the Microsoft
Desirability Toolkit [5], were used to generate word clouds that provide a visual
overview of participant reactions, to the use of both tangible and multi-touch controls
during the experiment (see Appendix A). The bigger the word and the darker the degree
of black displayed, the more an adjective has been preferred and the more frequently it
has been selected. After having checked their preferred adjectives, the subjects were
asked to indicate the three most representative for them amongst the chosen ones, then
briefly interviewed on these three to asses more deep personal opinions and impressions
about the controls. The results of these tests and the results of the interview are
explained in the following points.

4.3.1 TUI evaluation
 The subject’s most selected adjectives to describe their experience with the use
of tangible controls were controllable and easy to use (see Appendix A, 1.3.1, Figure
43). This results are consistent with the performance produced by subjects with
tangibles in both tasks, where in Task 1 they felt more secure in controlling the angular
rotation of the virtual paddle with the puck than with the their fingers, and in Task 2
they suffered less with the puck the friction produced by rapidly sliding the fingers on
the surface when trying to intercept a moving target. Also, the better tracking
technology provided by reacTIVision software for fiducial markers, had indeed
influenced subjects evaluation of the controls in favor of tangibles. These implications
will be discussed more in detail in point 5.

4.3.2 Multi-Touch evaluation
 Multi-touch control has been generally regarded as more uncontrollable and
frustrating with respect to tangible control, where this negative opinion may be partially
due to the tracking issues aforementioned. However, the adjectives that subjects have
most selected to describe their experience with multi-touch were accessible and intuitive
(see Appendix A, 1.3.2, Figure 44). This is a positive feedback in favor of this input
technology, that witnesses how multi-touch is becoming always more familiar thanks to
the increasing diffusion of portable touch-screen devices in the contemporary society.
This result goes partially in contrast with the qualitative results produced by Lucchi et al
in [86], where multi-touch was still regarded as a less intuitive input technology with
respect to tangible controls.

4.3.3 Interview
 Different trends have been detected by analyzing the interviews, and the tangible
control have generally received more positive feedback than the multi-touch. For
instance, more than one subject has defined the gameplay and the interaction under
tangible condition as more entertaining and fun, feeling that they achieved a better
performance with this type of control (see Appendix A, 1.3.3), which is actually
consistent with the analysis of the quantitative data. In particular, subject 9 commented
his experience with tangible controls, saying that he was “motivated to play, because the
characteristics of the TUI were coherent with the movement of the hand and the virtual
objects, therefore making the goal of the game clearer an the gameplay more
entertaining” (see Appendix A, 1.3.3). However, when using the tangible control in
Task 2, some users gave negative comments related with the latency between the
performed movement and the visual feedback, as in the case of subject 11 where he said

 49

that “the latency was frustrating me, in which I felt the control was not responsive with
fast movements” (see Appendix A, 1.3.3). This problem was indeed related with the
design of the application as well, which was sometimes demanding for movements too
fast to be optimally detected by the tracking systems. However, this choice was taken on
purpose to investigate the limits of the technology used, as well as trying to assess a
tradeoff between fun and optimal performance within the gameplay, in which testing
controls limitations and stress.

 More negative feedback were provided from the subjects regarding the use of
multi-touch controls. This control method have shown to elicit more complicated issues
in control than tangible control method, as for example the problem related with one’s
personal capacity to bend the fingers correctly to comfortably keep the contact with the
surface. Subject 3 infact, commented his experience with this control saying that “it
wasn’t feeling comfortable to try to find the optimal position with fingers all the time,
while trying to keep concentrated on the gameplay at the same time” (see Appendix A,
1.3.3). This problem was certainly emphasized by the tracking system, who was not
responding always optimally, as in the case of subject 1, who described the consequence
of the latency problem as “making the control of the virtual object not reliable and not
stable” (see Appendix A, 1.3.3). However, some positive comments have been given to
this control in terms of intuitivity and approachability, where some users have defined
the control as straightforward and very intuitive. For instance, subject 8 defined multi-
touch as “an intuitive control, which doesn’t need particular explanation or instructions
to be immediately understood and used” (see Appendix A, 1.3.3). Subject 9 commented
this control method saying that “it is a nice control, in which it gives you the possibility
to choose your own way to interact, an it is also very direct and easy to acquire” (see
Appendix A, 1.3.3)

 50

 51

5. DISCUSSION & FUTURE WORK

5.1 Discussion
 In this report we have presented a comparative analysis of TUI and multi-touch
input control methods, within the context of a real-time tabletop videogame interaction.
Through this design we wanted to investigate the effect of using both controls with this
type of real-time applications and assess their performances, as well as retaining
qualitative data regarding user experience, usability and satisfaction of the controls.

 The study has revealed significant difference in performance between tangible
and multi-touch controls under RTI video game for two different type of tasks,
suggesting that tangible controls were more reliable when accurate and precise gestures
were needed, and that they were also allowing for better responses when rapid and
precise movements were required. These findings are patially confirming the results of
previous works, which were testing these controls in non RTI context, and where
tangible controls have generally outperformed multi-touch in manipulation and
acquisition tasks [86, 114].

Overall, our results from the t-test and the analysis of variance in Task 1

suggested that tangible control was allowing subjects to perform more accurately and
precisely in ball deflection and target hit task. This could be due to different reasons: 1)
because of the robustness of a physical widget, such as a tangible puck, which is more
consistent with angular rotation and fine-grained angular adjustements than multi-touch
finger control, since it does not rely on how one is able to keep the fingers firmly in
contact with the surface; 2) because of the more optimal tracking system for fiducial
markers provided by reacTIVision, which probably gave to the subjects more security
about their actions; 3) because of the fingers natural trembling and arm fatigue, which
probably made difficult to keep a specific fixed position to perform accurate directional
adjustments, in order to find the right angle to gradually reach the target. The
quantitative results were reflecting the subject’s comments in qualitative analysis, where
most of them regarded tangible control under Task 1 as generally more reliable, stable
and controllable, reporting haptic feedback of the tangible as a good feature, eliciting
better sensation in control and giving more security about one’s actions and
performance (see Appendix A, 1.3.3).

The results of Task 2 also showed an advantage of tangible over multi-touch.

This could be partially due to the aforementioned tracking implications, as well as to
reasons more pragmatically related with the interaction between surface material and
physical characteristics of the controls. This task was actually designed with the aim of
balancing the characteristics of both controls, where multi-touch could compete with
tangible in a more equal way, since not particularly accurate gestures were required.
The results showed that the design partially succeded to achieve a balance between the
two controls, since the mean difference of performance in Task 2 was only -0.6 in
favour of tangible, and not almost the double as in Task 1 (see Appendix B). However,
the outperforming of tangible in Task 2 can be addressed to the following reasons: 1)
the rapid sliding of fingers on the acrylic surface could have produced a tiresome
sensation in multi-touch condition after a while, which is confirmed by the comments
reported by the subjects in the interview; 2) since tangibles are more eye-free controls,
in which they provide haptic feedback that could partially disentangle subjects from the
visual feedback of the application, it is possible that the visual stimuli could have been

 52

perceived more fastly while using tangible than multi-touch, explaining then a better
mean RT (Reaction Time) produced by tangible in this task; 3) the concurrence of
latency in the tracking system at high speeds and the sometimes extreme difficulty of
the application could have frustrated the subjects under the multi-touch conditions more
than under the tangible one; however, some negative comments are reported in this case
for both controls in the interview. One good point emerging from information gathered
after this task through post-test and interview was that, when not many cumbersome and
complicated gestures or manipulation are required while using multi-touch, this control
is regarded as very intuitive and highly approachable (see Appendix A, 1.3.3).

Finally, the correlation analysis performed for both tasks have evidenced the

effect of certain variables over the performance. While parameters as target size and
target distance failed to show a strong correlation with performance in Task1, the target
angle has shown to strongly affect the dependent variable, confirming the importance of
using a control which could allow for more accurate fine-grained manipulation and
accurate rotation, in order to be successful in performance. Also, independent
correlation analysis for tangible and multi-touch revealed a stronger dependency of the
former to target angle, suggesting that performance under tangible condition was more
concentrated on gradual reaching of the right angle from a fixed point, whereas multi-
touch might have been more dispersive and less consistent. In this case tangible controls
have preduced less constant error in detecting the right angle to hit the target then multi-
touch control, with a performance that was generally more accurate and precise. Strong
relationships were also find between performance, target speed and difficulty in Task2.
However, independent analysis for tangible and multi-touch did not reveal a big
difference between the two conditions, suggesting that the difference in strategy when
using these controls in Task 2 was minimal.

5.2 Faced problems and future works
Different challenges and problems have been faced during this study, that might

eventually guide future works in the field of research. The first one was comparing
tangible and multi-touch controls under RTI conditions and constraints, for the control
of a tabletop video game application. In order to be able to obtain consistent results, the
test had used strictly quantifiable measurements under time constraint, hence partially
reducing the fun generated by the interaction with the interface. However, with this
method we have been able to detect precise outcomes in the use of these controls in
real-time context, where findings are generally suggesting that tangibles are less prone
to mistakes and more precise in manipulations with respect to multi-touch also for video
game control. However, since qualitative analysis showed a good preference of subjects
towards multi-touch control in terms of intuitivity and accessibility, the use of this
technology in RTI context needs to be more deeply investigated. Indeed, part of the
results produced were subject to the limits in the design of the application, which is a
recurrent problem in task oriented interaction, and also influenced by the technology
used for fiducial and finger tracking. For instance, specific limitations were found in the
reacTIVision finger tracking system under certain conditions, such as latency or loss of
detection due to changes in fingers position. Especially when testing different subjects,
the system had to be constantly recalibrated, so as to adapt to the finger’s size of the
single person. Besides this drawbacks, reacTIVision is indeed very convenient to be
used to implement both tangible and multi-touch controls, in which it is an easy
software to manage and not costfull in terms of computer memory [4]. One suggestion

 53

to solve the aforementioned tracking problems, would be the comined use of a better
software for finger tracking and reacTIVision for fiducial tracking, or the improvement
of finger tracking system in the reacTIVision software by rewriting part of the source
code. Furthermore, some problems were found regarding the action to be performed and
surface material, which sometimes produced a non comfortable sensation in fastly
sliding the fingers on the surface due to friction. This problem might be solved by using
an anti-stiction coating surface in lieu of the classical ReacTable one, to facilitate glides
and similar gestures through a reduced friction. Regarding the analysis of the data, we
propose to integrate and readapt the Fitts’s law [35] to our model, in order to create an
ID that can give more consistency to the final results. The use of a readapted version of
the Microsoft Desirability Toolkit [5] strongly helped in detecting those impalpable
aspects of the user experience, that provided fundamental insights and suggestions for
the interpretation of the quantitative results. We would recommend the use of this
questionnaire to gather qualitative information even in other studies.

 54

 55

6. CONCLUSION

In this project we have presented results on comparative analysis of tangible and
multi-touch input control methods in two different performances, i.e accuracy-precision
and precision-rapidity, under RTI conditions and constraints. Our work was motivated
by the desire to test the response of these two control methods within a real-time
tabletop video game context which, surprisingly, has not been receiving particular
attention from the scientific community so far. Most of the focus on comparative
analysis between these two control methods, is still influenced by the WIMP paradigm
and related to issues like optimal target aquiring and selection, etc.

The analysis of the data has shown that TUIs are providing more reliability and

consistency in performing accurate and precise manipulations than multi-touch also in
this interaction context. However, this study represents just a first step, that might lead
the research in the field of input control methods to allow for more attention towards
RTI paradigm, especially for what concerns the use of tangible and multi-touch
technologies as mean to control applications other than modern readaptation of classical
WIMP GUIs (as in the case of iPad for instance). This could represent a great chance
to investigate more deeply the potential of this control methods, as well as exploiting
different types of “non conventional” gestures. Surely, one of the limits presented by
our experiment was the constraining of multi-touch interaction only to unimanual
strategy. However, it is in our will for future work to test these controls in RTI context,
allowing subjects to freely choose between a unimanual and a bimanual interaction
strategy.

 56

 57

REFERENCES

1. Accot, J., and S. Zhai. 1997. ‘‘Beyond Fitts’ Law: Models for Trajectory-
Based HCI Tasks.’’ In: Proceedings of the 1997 ACM Conference on
Human Factors in Computing Systems. New York: ACM Press, pp. 295–
302.

2. Accot, J., and S. Zhai. 1999. ‘‘Performance Evaluation of Input Devices in
Trajectory-Based Tasks: An Application of the Steering Law.’’ In:
Proceedings of the 1999 ACM Conference on Human Factors in Computing
Systems. New York: ACM Press, pp. 466–472.

3. Accot, J., and Zhai, S. (1997). Beyond Fitts' law: models for trajectory-based
HCI tasks. In Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI '97). ACM, New York, NY, USA, pp. 295-302.

4. Bencina, R., Kaltenbrunner, M., and Jorda, S. (2005). Improved Topological
Fiducial Tracking in the reacTIVision System. In: Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'05) - Workshops - Volume 03 (CVPR '05), Vol. 3. IEEE
Computer Society, Washington, DC, USA, pp. 99-105.

5. Benedek, J., and Miner, T. (2002). Measuring Desirability: New methods for
evaluating desirability in a usability lab setting. In: Proceedings of UPA
Usability Professional Association. Microsoft Corporation, 1 Microsoft
Way, Redmond, WA 98052.

6. Benko, H., Wilson, A.D., and Baudisch, P. (2006). Precise selection
techniques for multi-touch screens. In: Proceedings of the SIGCHI
conference on Human Factors in computing systems (CHI '06), Rebecca
Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin Jeffries, and Gary
Olson (Eds.). ACM, New York, NY, USA, pp. 1263-1272.

7. Bérard, F. (2003). The Magic Table: Computer-Vision Based Augmentation
of a Whiteboard for Creative Meetings. In: Proceedings of IEEE
International Conference in Computer Vision.

8. Block, F., Gutwin, C., Haller, M., Gellersen, H., and Billinghurst, M. (2008).
Pen and paper techniques for physical customisation of tabletop interfaces.
2008 3rd IEEE International Workshop on Horizontal Interactive Human
Computer Systems, pp. 17-24.

9. Brouwer, A. M., Brenner, E., and Smeets, J. B. (2000). Hitting moving
objects. The dependency of hand velocity on the speed of the target.
Experimental Brain Research, 133(2), pp. 242–248.

10. Brown, E., Buxton, W. and Murtagh, K. (1990) Windows on tablets as a
means of achieving virtual input devices. In D. Diaper et al. (Eds), Human-
Computer Interaction - INTERACT '90. Amsterdam: Elsevier Science
Publishers B.V. (North-Holland), pp. 675-681.

11. Brown, J.S., Collins, A., and Duguid, P. (1988). Situated Cognition and the

 58

culture of learning. IRL Report, No. IRL 88–0008.

12. Buxton, B. (2010). A Touching Story: A Personal Perspective on the History
of Touch Interfaces Past and Future. Information Display, 41(May), pp. 444-
448.

13. Buxton, W. (1983). Lexical and pragmatic considerations of input structures.
SIGGRAPH Comput. Graph. 17, 1 (January 1983), pp. 31-37.

14. Buxton, W. (1986) There's More to Interaction than Meets the Eye: Some
Issues in Manual Input. In Norman, D. A. and Draper, S. W. (Eds.), (1986),
User Centered System Design: New Perspectives on Human-Computer
Interaction. Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 319-
337.

15. Buxton, W. (1986). There's More to Interaction than Meets the Eye: Some
Issues in Manual Input. In Norman, D. A. and Draper, S. W. (Eds.), (1986),
User Centered System Design: New Perspectives on Human-Computer
Interaction. Lawrence Erlbaum Associates.

16. Buxton, W. (1987). ‘‘The Haptic Channel.’’ In R. M. Baecker and W. A. S.
Buxton, eds. Readings in Human-Computer Interaction: A Multidisciplinary
Approach. San Mateo, California: Morgan Kaufmann, pp. 357–365.

17. Buxton, W. (1994). Combined keyboard / touch tablet input device. XEROX
Disclosure Journal, 19(2), March/April 1994, pp.109-111.

18. Buxton, W. (2008). Multi-touch systems that i have known and loved
http://www.billbuxton.com/multitouchOverview.html

19. Buxton, W. (in progress). Gesture Based Interaction. Unfinished book
manuscript.

20. Buxton, W. (in progress). Human Input to Computer Systems: Theories,
Techniques and Technology. Unfinished book manuscript.

21. Buxton, W. (in progress). Some Representative 2D Tasks. Unfinished book
manuscript.

22. Buxton, W. and Myers, B. (1986). A study in two-handed input. In:
Proceedings of CHI '86, pp. 321–326.

23. Buxton, W., Hill, R. and Rowley, P. (1985). Issues and techniques in touch-
sensitive tablet input, Computer Graphics, 19(3), In: Proceedings of
SIGGRAPH'85, pp. 215–223.

24. Buxton,W. (2008). The Long Nose of Innovation.
http://www.businessweak.com/innovate/content/jan2008/id2008012_297369
.htm

25. Caeyenberghs, K., Wilson, P. H., Van Roon, D., Swinnen, S. P., and Smits-
Engelsman, B. C. M. (2009). Increasing convergence between imagined and
executed movement across development: evidence for the emergence of
movement representations. Developmental Science, 12(3), pp. 474-483.

26. Card, S.K., English, W.K., and Burr, B. J. (1978). Evaluation of mouse, rate-
controlled isometric joystick, step keys and text keys for text selection on a
CRT. Ergonomics, 21(8), pp. 601-613.

 59

27. Costanza, E. and Robinson, J.A. (2003). A region adjacency tree approach to
the detection and design of fiducials, In: Vision, Video and Graphics (VVG),
pp. 63–70.

28. De Lussanet, M. H. E., Smeets, J. B. J., and Brenner, E. (2001). The effect of
expectations on hitting moving targets: influence of the preceding target’s
speed. Experimental Brain Research, 137(2), pp. 246–248.

29. Dietz, P., Leigh, D. (2001). DiamondTouch: A Multi-user Touch
Technology. In: Proceedings of the 14th Annual Symposium on User
Interface Software and Technology. UIST 2001, ACM, New York, NY,
USA, pp. 219-226.

30. Dourish, P. (2000). Embodied Interaction : Exploring the Foundations of a
New Approach to HCI. Work, HCI in the (HCI in the New Millennium), pp.
1-16.

31. Dourish, P. (2004). Where the action is: the foundations of embodied
interaction. Cambridge, MIT Press.

32. Drewes, H. (2010). Only one Fitts' law formula please!. In: Proceedings of
the 28th of the international conference extended abstracts on Human
factors in computing systems (CHI EA '10). ACM, New York, NY, USA, pp.
2813-2822.

33. Fishkin, K.P. (2004). A taxonomy for and analysis of tangible interfaces.
Personal Ubiquitous Comput. 8, 5 (September 2004), pp. 347-358.

34. Fishkin, K.P. (2004). A taxonomy for and analysis of tangible interfaces,
Personal and Ubiquitous Computing, Vol. 8, No. 5, pp.347-358.

35. Fitts, P.M. (1954). The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental
Psychology, volume 47, number 6, June 1954, pp. 381–391. (Reprinted in
Journal of Experimental Psychology: General, 121(3), pp. 262–269, 1992).

36. Fitzmaurice, G.W., Ishii, H. and Buxton, W. (1995) Bricks: Laying the
Foundations for Graspable User Interfaces, In: Proceedings of CHI'95, pp.
442-449.

37. Fjeld, M. , Bichsel, M. and Rauterberg, M. (1998) BUILD-IT: An Intuitive
Design Tool Based on Direct Object Manipulation. In I. Wachsmut and M.
Frölich (eds.): Gesture and Sign Language in Human-Computer Interaction,
Lecture Notes in Artificial Intelligence, Vol. 1371, Berlin: Springer-Verlag,
pp. 297-308.

38. Foley, J.D., Wallace, V.L., and Chan, P. (1984). The human factors of
computer graphics interaction techniques. IEEE Comput. Graph. Appl. 4, 11
(November 1984), pp. 13-48.

39. Frazer, J. (1995). An Evolutionary Architecture. Themes VII. London:
Architectural Association.

40. Ganser, C., Kennel, T., Birkeland, N., and Kunz, A. (2005). Computer-
supported Environment for Creativity Processes in Globally Distributed
Teams. In: Proceedings of the International Conference on Engineering
Design ICED 2005, pp. 109-110.

 60

41. Graham, T.C.N.,. Watts, L.A. Calvary, C., Coutaz, J., Dubois, E., and Nigay,
L. (2000). A dimension space for the design of interactive systems within
their physical environments. In Proceedings of the 3rd conference on
Designing interactive systems: processes, practices, methods, and
techniques (DIS '00), Daniel Boyarski and Wendy A. Kellogg (Eds.). ACM,
New York, NY, USA, pp. 406-416.

42. Grossman, T. and Balakrishnan, R. (2005). A probabilistic approach to
modeling two-dimensional pointing. ACM Trans. Comput.-Hum. Interact.
12, 3 (September 2005), pp. 435-459.

43. Guiard, Y. (1987). Asymmetric Division of Labor in Human Skilled
Bimanual Action: The Kinematic Chain Model. In: Journal of Motor
Behavior, 19(4), pp. 486-517.

44. Guiard, Y. (2001). Disentangling relative from absolute amplitude in Fitts'
law experiments. In: CHI '01 extended abstracts on Human factors in
computing systems (CHI EA '01). ACM, New York, NY, USA, pp. 315-316.

45. Guiard, Y. (2009). The problem of consistency in the design of Fitts' law
experiments: consider either target distance and width or movement form
and scale. In: Proceedings of the 27th international conference on Human
factors in computing systems (CHI '09). ACM, New York, NY, USA, pp.
1809-1818.

46. Guiard, Y., M. Beaudouin-Lafon, and D. Mottet. 1999. ‘‘Navigation as a
Multiscale Pointing Extending Fitts’ Model to Very High Precision Tasks.’’
In: Proceedings of the 1999 ACM Conference on Human Factors in Com-
puting Systems. New York: ACM Press, pp. 450–457.

47. Han, J.Y. (2005). Low-cost Multi-touch Sensing through Frustrated Total
Internal Reflection. In: Proceedings of UIST 2005; ACM, New York, NY,
USA, pp. 115-118.

48. Hartson, H. R., and Gray, P. (1992). Temporal Aspects of Tasks in the User
Action Notation. Human-Computer Interaction, 7(1), Taylor and francio, pp.
1-45.

49. Herot, C., Weinzapfel, G. (1978). One-Point Touch Input of Vector
Information from Computer Displays, Computer Graphics, 12(3), pp. 210–
216.

50. Hilliges, O., Butz, A., Izadi, S., and Wilson, A. D. (2010). Interaction on the
Tabletop: Bringing the Physical to the Digital. In: Tabletops-Horizontal
Interactive Displays, Springer, pp. 189–221.

51. Hinckley, K. (2006). Input Technologies and Techniques, In: Handbook of
Human-Computer Interaction, ed. by A. Sears and J. Jacko.

52. Hinckley, K., Pahud, M., and Buxton, B. (2010). Direct Display Interaction
via Simultaneous Pen + Multi-touch Input. Society for Information Display
(SID) Symposium Digest of Technical Papers, May 2010, Volume 41(1),
Session 38, pp. 537-540.

53. Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Rodenhouse, J.,
Wilson, A., Benko, H. and Buxton, B. (2010). Manual Deskterity : An
Exploration of Simultaneous Pen + Touch Direct Input. In: Proceedings of

 61

the 28th International Conference Extended Abstracts on Human Factors in
Computing Systems, CHI'10 (alt.chi), pp. 2793 – 2802.

54. Hofer, R., Kunz, A. (2009). TNT: Touch ‘n’ TUI on LC-Displays. In:
Proceedings of the 8th International Conference on Entertainment
Computing ICEC ’09, Paris, France, pp. 222-227.

55. Hofer, R., Kunz, A., and Kaplan, P. (2008). MightyTrace: Multiuser
Tracking Technology on LC-Displays. In: Proceedings of CHI 2008, ACM,
New York, NY, USA, pp. 215-218.

56. Hofer, R., Naeff, D., and Kunz, A. (2009). FLATIR: FTIR Multi-touch
Detection on a Discrete Distributed Sensor Array. In: Proceedings of the
Third International Conference on Tangible and Embedded Interaction TEI
’09, ACM, New York, NY, USA, pp. 317-322.

57. Holman, D. (2007). Gazetop: interaction techniques for gaze-aware
tabletops. Group (p. 1660). ACM.

58. Holmquist L, Redstro, J, Ljungstrand, P. (1999). Token-based access to
digital information. In: Proceedings of the 1st inter- national symposium on
handheld and ubiquitous computing (HUC’99), Karlsruhe, Germany,
September 1999, pp 234–245.

59. Huang, Y., Gross, M. D., Do, E. Y. L., and Eisenberg, M. (2009). Easigami:
A reconfigurable folded-sheet TUI. In: Proceedings of the 3rd International
Conference on Tangible and Embedded Interaction, ACM, pp. 107–112.

60. Hunt, A., and Kirk, R. (2000). Trends in Gestural Control of Music, chapter
Mapping Strategies for Musical Performance. Ircam - Centre Pompidou.

61. Ishii, H., and Ullmer, B. (1997) Tangible Bits: Towards Seamless Interfaces
between People , Bits and Atoms. (S. Pemberton, Ed.) Interfaces,
97pp(March), ACM, pp. 234-241.

62. Izadi, S., Hodges, S., Taylor, S., Rosenfeld, D., Villar, N., Butler, A., and
Westhues, J. (2008). Going beyond the display: a surface technology with an
electronically switchable diffuser. In: Proceedings of the 21st annual ACM
symposium on User interface software and technology (UIST '08). ACM,
New York, NY, USA, pp. 269-278.

63. Jacob, J.K.R., Sibert, L.E. McFarlane, D.C., and Preston Mullen Jr, M.
(1994). Integrality and separability of input devices. ACM Trans. Comput.-
Hum. Interact. 1, 1 (March 1994), pp. 3-26.

64. Jagacinski, R. J., Repperger, D. W., Moran, M. S., Ward, S. L., and Glass, B.
(1980). Fitts’ Law and the Microstructure of Rapid Discrete Movements.
Journal of Experimental Psychology Human Perception and Performance,
6(2), pp. 309-320.

65. Jagacinski, R. J., Repperger, D. W., Ward, S. L., and Moran, M. S. (1980).
A test of fitts’ law with moving targets. Hum Factors, 22(2):225–233, April
1980.

66. Jagacinski, R.J., and Monk, D.L. (1985). Fitts’ Law in two dimension with
hand and head movements. Journal of motor behavior, 17, 77-95.

67. Jagacinski, R.J., Monk, D.L. (1985). Fitts' Law in two dimensions with hand

 62

and head movements. Journal of motor behavior, Vol. 17, No. 1, pp. 77-95.

68. Jagacinski, R.J., Repperger, D.W., Ward, S.L. and Moran, M.S. (1980). A
test of Fitts’ Law with moving targets, Human Factors, 22, pp. 225-233.

69. Jetter, H.C., Gerken, J., Zöllner, M., Reiterer, H., and Milic-Frayling, N.
(2011), Materializing the Query with Facet-Streams–A Hybrid Surface for
Collaborative Search on Tabletops, The ACM CHI Conference on Human
Factors in Computing Systems CHI, May, Vancouver, Canada, pp. 7–12.

70. Jordà, S. (2007). Interactivity and Live Computer Music, In: The Cambridge
Companion to Electronic Music, Edited by Nick Collins and Julio
d’Escrivan. Cambridge University Press, UK.

71. Jordà, S. (2008). On stage: the reactable and other musical tangibles go real,
Int. J. Arts and Technology, Vol. 1, Nos.

72. Jorda, S., Kaltenbrunner, M., Geiger, G., and Alonso, M. (2006) The
reacTable: A Collaborative Musical Instrument. 15th IEEE International
Workshops on Enabling Technologies Infrastructure for Collaborative
Enterprises WETICE06, pp. 406-411.

73. Kabbash, P., Buxton, W. and Sellen, A. (1994). Two-Handed Input in a
Compound Task, In: Proc. of CHI94, pp. 417-423.

74. Kaltenbrunner, M. (2009). Reactivision and Tuio: a tangible tabletop toolkit.
In: Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces, pp. 9–16.

75. Kaltenbrunner, M., and Bencina, R. (2007). Reactivision: a computer-vision
framework for table-based tangible interaction. In: Proceedings of the 1st
international conference on Tangible and Embedded Enteraction, pp. 69–74.

76. Karam, M. (2005). A taxonomy of Gestures in Human Computer
Interaction. ACM Transactions on ComputerHuman Interactions, (ECSTR-
IAM05-009), pp. 1-45.

77. Kiousis, S. (2002). ‘Interactivity: a concept explication’. New Media and
Society, Vol4(3), pp. 355–383.

78. Kirk, D., Sellen, A., Taylor, S., Villar, N., and Izadi. S. (2009). Putting the
physical into the digital: Issues in designing hybrid interactive surfaces. In:
Proceedings of the 2009 British Computer Society Conference on Human-
Computer Interaction, pp. 35–44.

79. Kopper, R., Bowman, D.A., Silva, M.G., and McMahan, R.P. (2010). A
human motor behavior model for distal pointing tasks. Int. J. Hum.-Comput.
Stud. 68, 10 (October 2010), pp. 603-615.

80. Krueger, M.W. (1983). Artificial Reality, Addison-Wesley, Reading, MA.

81. Krueger, M.W., Gionfriddo, T., and Hinrichsen, K. (1985). VIDEOPLACE -
An Artificial Reality, In: Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’85), pp. 35–40.

82. Kunz, A., Fjeld, M. (2010). From Table–System to Tabletop: Integrating
Technology into Interactive Surfaces, In: Tabletops - Horizontal Interactive
Displays, ISBN 978-1-84996-112-7, Volume Human-Computer Interaction

 63

Series, Issue Tabletops - Horizontal Interactive Displays, pp. 53-72.

83. Lave, J., and Wenger, E. (1991). Situated Learning; legitimate peripheral
participation. Cambridge University Press.

84. Lee, S., Buxton, W., and Smith, K.C. A multi-touch three dimensional
touch-sensitive tablet. In: Proc. CHI 1985, ACM Press (1985), pp. 21–25.

85. Leganchuk, A., Zhai, S.& Buxton, W. (1998). Manual and Cognitive
Benefits of Two-Handed Input: An Experimental Study. Transactions on
Human-Computer Interaction, 5(4), pp. 326–359.

86. Lucchi, A., Jermann, P., Zufferey, G., and Dillenbourg, P. (2010). An
empirical evaluation of touch and tangible interfaces for tabletop displays.
In: Proceedings of the fourth international conference on Tangible,
embedded, and embodied interaction (TEI '10). ACM, New York, NY, USA,
pp. 177-184.

87. MacKenzie, I. S., and Buxton, W. (1994). The prediction of pointing and
dragging times in graphical user interfaces. Interacting with Computers, 6,
pp. 213-227.

88. MacKenzie, I. S., and W. A. S. Buxton. 1992. ‘‘Extending Fitts’ Law to Two
Dimensional Tasks.’’ In: Proceedings of the 1992 ACM Conference on
Human Factors in Computing Systems. New York: ACM Press, pp. 219–
226.

89. MacKenzie, I. S., Sellen, A., and Buxton, W. (1991). A comparison of input
devices in elemental pointing and dragging tasks. In: Proceedings of the CHI
`91 Conference on Human Factors in Computing Systems, New York: ACM,
pp. 161-166.

90. MacKenzie, I.S. (1992). Fitts' law as a research and design tool in human-
computer interaction. Hum.-Comput. Interact. 7, 1 (March 1992), pp. 91-
139.

91. Mackinlay, J., Card, S.K., and Robertson, G.G. (1990). A semantic analysis
of the design space of input devices. Hum.-Comput. Interact. 5, 2 (June
1990), pp. 145-190.

92. Maekawa, T., Itoh, Y., Kawai, N., Kitamura, Y., and Kishino, F. (2009).
MADO interface: a window like a tangible user interface to look into the
virtual world. In: Proceedings of the 3rd International Conference on
Tangible and Embedded Interaction, ACM, pp. 175–180.

93. Mallett, R. (2006). Time Traveler: A Scientist's Personal Mission to Make
Time Travel a Reality. Thunder's Mouth Press.

94. Marshall, P., Fleck, R., Harris, A., Rick, J., Hornecker, E., Rogers, Y., Yuill,
N., and Dalton, N.S. (2009). Fighting for control: children's embodied
interactions when using physical and digital representations. In: Proceedings
of the 27th international conference on Human factors in computing systems
(CHI '09). ACM, New York, NY, USA, pp. 2149–2152.

95. McAvinney, P. (1986). The Sensor Frame - A Gesture-Based Device for the
Manipulation of Graphic Objects, Carnegie-Mellon University.

96. Merrill, D., Kalanithi, J., and Maes, P. (2007). Siftables: towards sensor

 64

network user interfaces. In: Proceedings of the 1st international conference
on Tangible and embedded interaction, ACM, pp. 75–78.

97. Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., and Smith, J. E.
(1988). Optimality in human motor performance: ideal control of rapid
aimed movements. Psychological Review, 95(3), American Psychological
Association, pp. 340-370.

98. Moscovich, T., and Hughes, J.F. (2008). Indirect mappings of multi-touch
input using one and two hands. In: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems (CHI '08).
ACM, New York, NY, USA, pp. 1275–1284.

99. Nielsen, B., Ren, S., and Agha, G. (1998). Specification of Real-Time
Interaction Constraints. In: Proceedings of the The 1st IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
'98). IEEE Computer Society, Washington, DC, USA.

100. Parés, N. and Parés, R. (2006). “Towards a Model for a Virtual Reality
Experience: The Virtual Subjectiveness”. Presence 15(5), pp. 524–538.

101. Patten J, Ishii H, Hines J, Pangaro G (2001) SenseTable: A Wireless Object
Tracking Platform for Tangible User Interfaces. In: Proceedings of CHI
2001; ACM, New York, NY, USA, pp. 253-260.

102. Patten, J., Recht, B., and Ishii, H. (2002). Audiopad: a tag-based interface for
musical performance. In: Proceedings of the 2002 conference on New
interfaces for musical expression (NIME '02), Eoin Brazil (Ed.). National
University of Singapore, Singapore, Singapore, pp. 1-6.

103. Penny, S. (2010/2011) Interactivity – Who cares? Forthcoming in:
Fiberculture, Open Humanities Press, Douglas Kellner, ed.

104. Piazza, T., Fjeld, M. (2007). Ortholumen: Using Light for Direct Tabletop
Input. In: Proceedings of IEEE TableTop 2007, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 193-196.

105. Port, N.L., Lee, D., Dassonville, P., and Georgopoulos, A. P. (1997) Manual
interception of moving targets: I. Performance and movement initiation,
Experimental Brain Research, Springer Berlin / Heidelberg, Biomedical and
Life Sciences, Volume 116, Issue 3, pp. 406-420.

106. Radwin, R. G., Vanderheiden, G. C., and Lin, M. L. (1990). A method for
evaluating head-controlled computer input devices using Fitts law. Human
Factors, 32(4), pp. 423-438.

107. Radwin, R.G., Vanderheiden, G.C., and Lin, M. (1990). A method for
evaluating head-controlled computer input devices using Fitts law. Hum.
Factors 32, 4 (August 1990), 423-438.

108. Rafaeli, S. (1988) ‘Interactivity: from New Media to Communication’, in
Hawkins, R. P., Wieman, J. M. and Pingree, S. (eds.), Advancing
Communication Science: Merging ass and Interpersonal Processes.
Newbury Park, CA: Sage, pp. 110–34.

109. Rekimoto, J. (2002). SmartSkin: An Infrastructure for Freehand
Manipulation on Interactive Surfaces. In: Proceedings of CHI 2002; ACM,

 65

New York, NY, USA, pp. 113-120.

110. Smith, G.C. (1995). The marble answering machine. In: The Hand That
Rocks the Cradle, pages 60–65.

111. Steuer, J.S. (1992). “Defining Virtual Reality: Dimensions Determining
Telepresence”, Journal of Communication 42(4), pp. 73–93.

112. Suzuki, H., and Kato, H. (1995). Interaction-level support for collaborative
learning: AlgoBlock — An open programming language, In: Proceedings of
CSCL.

113. Terrenghi, L., Kirk, D., Sellen, A., and Izadi, S. (2007). Affordances for
manipulation of physical versus digital media on interactive surfaces. In:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 1157–1166.

114. Tuddenham, P., Kirk, D.S., Izadi, S. (2010) Graspables revisited: multi-touch
vs. tangible input for tabletop displays in acquisition and manipulation tasks.
In: CHI 2010, pp. 2223-2232.

115. Ullmer, B. (2002). Tangible Interfaces for Manipulating Aggregates of
Digital Information, Ph.D. Dissertation, Massachusetts Institute of
Technology.

116. Ullmer, B. and Ishii, H. (2000). Emerging frameworks for tangible user
interfaces. IBM Syst. J. 39, 3-4 (July 2000), pp. 915-931.

117. Ullmer, B., and Ishii, H. (1997) The metaDESK: models and prototypes for
tangible user interfaces. In: Proceedings of the 10th annual ACM symposium
on User interface software and technology, ACM, Vol. 97, pp. 223-232.

118. Underkoffler, J. and Ishii, H. (1999). Urp: A luminous-tangible workbench
for urban planning and design, In: Proceedings of CHI ’99, NY: ACM, pp.
386–393.

119. Wanderley, M. M. (2001), September 2001. Gestural control of music.
Paper presented at the Int. Workshop on Human Supervision and Control in
Engineering and Music, Kassel, Germany, September.

120. Wang, F., and Ren, X. (2009). Empirical evaluation for finger input
properties in multi-touch interaction. In: Proceedings of the 27th
international conference on Human factors in computing systems (CHI '09).
ACM, New York, NY, USA, pp. 1063–1072.

121. Weiss, M., Voelker, S., Sutter, C., and Borchers, J. (2010). BendDesk:
Dragging Across the Curve. ACM, Work, pp. 1-10.

122. Wellner, P. (1993) Interacting with Paper on the Digital Desk. Commun.
ACM, pp. 86-96.

123. Wilson, A. (2005). PlayAnywhere: A Compact Interactive Tabletop
Projection-Vision System. In: Proceedings of the 18th Annual ACM
Synposium on User Interface Software and Technology UIST 2005, ACM,
New York, NY, USA, pp. 83-92.

124. Zabramski, S., Gkouskos, D., Lind, M. (2011). A comparative evaluation of
mouse, stylus and finger input in shape tracing. I Georgios Christou,

 66

Panayiotis Zaphiris, Ee Lai-Chong Law (red.) In: Proceedings of the 1st
European Workshop on HCI Design and Evaluation, Toulouse, France: IRIT
Press, pp. 57-61.

125. Zabramski, S., Gkouskos, D., Lind, M. A. (2011). Comparative evaluation of
mouse, stylus and finger input in shape tracing. In: Proceedings of the 1st
European Workshop on HCI Design and Evaluation: The inuence of domain
on Human Computer Interaction design and evaluation. Toulouse, France:
IRIT Press, pp. 57-61.

126. Zaleski, M. and Moray, M. (1986). Hitts' law? A test of the relationship
between information load and movement precision. In: Proceedings of the
21st Annual NASA University Conference on Manual Control.

127. Zhai, S., and Milgram, P. (1998). Quantifying coordination in multiple DOF
movement and its application to evaluating 6 DOF input devices. In
Proceedings of the SIGCHI conference on Human factors in computing
systems (CHI '98), Clare-Marie Karat, Arnold Lund, Jolle Coutaz, and John
Karat (Eds.). ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, pp. 320-327.

128. Zhai, S., Kong, J., and Ren, X. (2004). Speed-accuracy tradeoff in Fitts' law
tasks: on the equivalency of actual and nominal pointing precision. Int. J.
Hum.-Comput. Stud. 61, 6 (December 2004), pp. 823-856.

 67

APPENDIX A

1.1 Tables of Results Task 1

Table 2: Overall performance Task 1. Mean and SD

Table 3: Mean performance of subjects in tangible and multi-touch conditions. Paired Samples
t-test

Table 4: Analysis of variance between performance under tangible and multi-touch condition.
One-Way ANOVA

 68

1.1.1 Correlation analysis Task 1

Table 5: Correlation analysis of global performance over target size, target distance and target
angle. Pearson's Correlation

Table 6: Independent correlation analysis of tangible and multi-touch performance over target
size, target distance and target angle. Pearson's Correlation

 69

1.2 Tables of results Task 2

Table 7: Overal performance Task2. Mean and SD

Table 8: Mean performance of subjects in tangible and multi-touch conditions. Paired samples
Wilcoxon test

 70

1.2.1 Correlation analysis
Table 9: Correlation analysis of global performance over target speed, target starting position
and target speed*initial position (difficulty). Spearman's Correlation

Table 10: Independent corelation analysis for tangible and multi-touch performance over target
speed, target starting position and target speed*initial position (difficulty). Spearman's
Correlation

 71

1.2.2 Reaction Time analysis
Table 11: Overal performance reaction time, Mean and SD

Table 12: Correlation analysis of mean reaction time over target speed, target initial position
and target speed*initial position (difficulty). Spearman's Correlation

 72

1.3 Post-Test analysis

1.3.1 Tangible evaluation (word cloud)

1.3.2 Multi-Touch evaluation (word cloud)

1.3.3 Comments from the interview

 The following part of the appendix reports the comments extracted through the
post interview about user experience and controls usability. The subjects have been
guided to the interview, by making them choose the three adjectives that they regarded
as more significant to describe their performances, amongst the ones previously chosen
in the post test. All the discussions emerged during the interview were developed on top
of this choices. Since many trends in describing the controls were very similar, the most
significant comments will be here reported.

Positive comments on tangible controls:

“I didn’t need any particular instruction to understand how to control the paddle in the
gameplay”

“I think the shape of the object was appropriate for this type of game”

 73

“I thin the control was really adequate for the first task, especially for finding the right
angle, it was very reliable in rotation”

“the control made the game very entertaining and fun”

“even it was simple to use it was challenging anyway, especially in the first task I felt I
could calibrate my movements very well”

“controlling the paddle with the tangible makes the game really entertaining”

“by using this control, I made sense of the task immediately and without problems, I
think it’s appropriate for this kind of video games”

“I could perceive my learning curve while playing with it, I think I improved during the
gameplay, it was definitely better than the multi-touch”

“the haptic feedback made the control definitely more reliable and easy to use”

“it’s nice because you don’t have to apply any pressure on the surface when you use it”

“it really allows you to use your gaming skills”

“when I was using it I didn’t have to be concerned about the image of the paddle, and it
was better because in this case I could concentrate more on the targets”

Negative comments on tangible controls:

“in the second task, because of the delay I felt that was slow”

“I felt a bit tired with my hand in rotating the wrist”

“the latency was making me think that I was loosing control”

“sometimes the object was frictioning on the surface and it felt a bit uncomfortable”

“I think multi-touch was better for the second task”

Positive comments on multi-touch control:

“the control is intuitive and it was funny to play with it”

“I think using two fingers from the same hand to control the paddle was a good
combination”

“the control was very straightforward”

“you can choose your own way to interact with it”

 74

“the relation with the virtual object is direct and you understand immediately how to
control it”

“I didn’t need someone to explain how to control the virtual object, and it was very nice
to control it with a part of the body, because it makes the movements very intuitive”

“I liked it more than the tangible, I felt more free I using it”

Negative comments on multi-touch controls:

“it was tiring rotating with my wrist all the time in the first task, maybe controlling it
with two hands would be better”

“I felt that I was not able to keep the proper angle in the first task”

“the fingers were often loosing the contact with the surface and it made me stressed”

“the control is inefficient because is not able to respond to my movements in the proper
way, especially in the second task, it wasn’t as fast as I”

“the tracking is too problematic, I couldn’t play and have fun”

“is not stable and not appropriate for the surface, it’s annoying the continuous friction”

“I felt I wasn’t free to move as I wanted, because it often loosed the contact”

“is not good for wrist rotation, not comfortable and not reliable”

“it’s more tyring and less precise than the tangible”

“at long time it’s tiring, and it doesn’t feel comfortable in extreme rotation”

“I felt definitely more sure and precise with the tangible”

 75

APPENDIX B

1.1 Pre-Test Questionnaire

 76

 77

1.2 Post-Test Questionnaire

 78

 79

APPENDIX C

1.1 Processing code for application used in Task 1,
implementation of Multi-Touch control

import fullscreen.*;
import processing.opengl.*;
import javax.media.opengl.GL;
import fisica.*;
import ddf.minim.*;
import TUIO.*;

PrintWriter output;

Minim minim;
AudioSample bop;
AudioSample ball;
AudioSample score;
AudioSample start;
AudioPlayer count;

FWorld world;
FBox paddle;
FCircle target_1, target_2;
FCircle ball1;
FCircle ball2;

TuioProcessing tuioClient;

boolean is_t = false;
boolean is_a = false;
boolean is_b = false;
boolean ball1Exists = false;
boolean ball2Exists = false;

FullScreen fs;

PGraphicsOpenGL pgl;
GL gl;

float px,py,px2,py2;
float angle,angle2;
float radius = 100;
float frequency = 3;
float frequency2 = 3;
float x, x2;

final int RED = 1;
final int BLU = 0;

final int START = 1;
final int R = 2;
final int B = 3;
final int END = 0;

 80

int playingTime;
int ballTime;
int totalTime;
int startingTime;
int contact_p_b = 0;
int state;
int red_state;
int blu_state;
int[] randDist = {200,300,400,450};
int[] randDispRed = {300,400,490};
int[] randDispBlu = {550,650,740};
int[] randSize = {10,15,25,30};
int targetX;
int targetY;
int rdist;
int rdispR;
int rdispB;
int rs;
int targetWidth;
float ballPosX;
float ballPosY;

float alfa = 50;

PFont f;
PFont adore;
TuioCursor a;
TuioCursor b;
TuioObject my_obj;

static final boolean FULL_SCREEN = true;
//static final boolean DUAL_VIEW = true;

//static final boolean FULL_SCREEN = false;
static final boolean DUAL_VIEW = false;

static final boolean DEBUG = false;

static final float M_PI = (float)Math.PI;
static final float M_PI2 = (float)Math.PI*2.0;

//
// Calibration values
//
int g_calibration_mode = 0;

static final int OFFSET_XY = 1;
static final int ROTATE_XY = 2;
static final int ROTATE_Z = 3;
static final int SCALE_XY = 4;

float g_ax = 0.0, g_ay = 0.0, g_az = 0.0;
float g_sx = 1.0, g_sy = 1.0;
float g_ox = 0.0, g_oy = 0.0;

 81

// Load / Store Calibration Parameters
// Thx to http://www.vbforums.com/showthread.php?t=308145
void CalibrationSave(String filename)
{
float[] params = { g_ax, g_ay, g_az, g_sx, g_sy, g_ox, g_oy };

 try {
 FileOutputStream fos = new FileOutputStream(filename);
 ObjectOutputStream out = new ObjectOutputStream(fos);
 out.writeObject(params);
 out.flush();
 out.close();
 println("Calibration file saved.");
 }
 catch (IOException e)
 {
 println(e);
 }
}

void CalibrationLoad(String filename)
{
 try {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream in = new ObjectInputStream(fis);
 float[] p = (float[])in.readObject();

 g_ax = p[0];
 g_ay = p[1];
 g_az = p[2];
 g_sx = p[3];
 g_sy = p[4];
 g_ox = p[5];
 g_oy = p[6];

 in.close();

 println("Calibration file loaded.");
 }
 catch (Exception e)
 {
 println(e);
 }
}

void DrawCalibrationGrid()
{
 float tx = width/2.5;
 float ty = height/2.5;
 float tz = -1;

// stroke(0,256,0);
// fill(0,256,0);

 82

stroke(255);
fill(255);

 for(int i=0; i<7; i++)
 {
 float ix = width*i/6.0;
 float iy = height*i/6.0;
 line(ix, 0, ix, height);
 line(0, iy, width, iy);
 }

 stroke(255,0,0);
 fill(255,0,0);

 if(g_calibration_mode == OFFSET_XY)
 text("> OFFSET XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_XY)
 text("> ROTATE XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_Z)
 text("> ROTATE Z <", tx, ty, tz);

 if(g_calibration_mode == SCALE_XY)
 text("> SCALE XY <", tx, ty, tz);
}

void keyPressed()
{

if(key == 'r') // Reset
{
 g_ax = 0.0; g_ay = 0.0; g_az = 0.0;
 g_sx = 1.0; g_sy = 1.0;
 g_ox = 0.0; g_oy = 0.0;
}

if(key == 's') // Save to file
{
 CalibrationSave("calibrationS2_M.dat");
}

if(key == 'l') // Load from file
{
 CalibrationLoad("calibrationS2_M.dat");
}

if(key == ENTER)
{
 g_calibration_mode = (g_calibration_mode + 1) % 5;
}

if (key != CODED)
{
 return;
}

 83

if(g_calibration_mode == OFFSET_XY)
{
 if (keyCode == LEFT) g_ox-=2.5;
 if (keyCode == RIGHT) g_ox+=2.5;
 if (keyCode == UP) g_oy-=2.5;
 if (keyCode == DOWN) g_oy+=2.5;
}
if(g_calibration_mode == ROTATE_XY)
{
 if (keyCode == LEFT) g_ax-=0.025;
 if (keyCode == RIGHT) g_ax+=0.025;
 if (keyCode == UP) g_ay-=0.025;
 if (keyCode == DOWN) g_ay+=0.025;
}
if(g_calibration_mode == ROTATE_Z)
{
 if (keyCode == LEFT) g_az-=0.0125;
 if (keyCode == RIGHT) g_az+=0.0125;
}
if(g_calibration_mode == SCALE_XY)
{
 if (keyCode == LEFT) g_sx-=0.025;
 if (keyCode == RIGHT) g_sx+=0.025;
 if (keyCode == UP) g_sy-=0.025;
 if (keyCode == DOWN) g_sy+=0.025;
}

}

// Original idea by Daniel Gallardo
void ApplyCalibrationMatrix()
{
int g_w = 1024;
int g_h = 768;

float fov = PI/3.0;
float cameraZ = (height/2.0) / tan(fov/2.0);

//perspective(fov, float(g_w)/float(g_h),
// 0.0, 100.0);

 translate(g_ox,
 g_oy,
 -4.0f);

 translate(g_w/2, g_w/2, 0);

 rotateX(g_ax);
 rotateY(g_ay);

 rotateZ(g_az);

 scale(g_sx, g_sy, 1);

 translate(-g_w/2, -g_h/2, 0);

 84

}

// these are some helper variables which are used
// to create scalable graphical feedback
float cursor_size = 20;
float object_size = 40;
float table_size = 480;
float scale_factor = 1.2;
PFont font;

// Don't show frame, as in http://processing.org/hacks/hacks:undecoratedframe
void init()
{
 if(FULL_SCREEN)
 {
 frame.removeNotify();
 frame.setUndecorated(true);
 frame.addNotify();
 }

 super.init();
}

void setup()
{

 output = createWriter("S1_M/ID_01.txt");
 startingTime = millis();
 state = START;

 totalTime = 10000;

 red_state = 0;
 blu_state = 0;
 adore = loadFont("Adore64-30.vlw");
 f = loadFont("Verdana-48.vlw");
 textSize(28);

 minim = new Minim(this);

 bop = minim.loadSample("Bop.aiff", 512);
 ball = minim.loadSample("Ball.aiff", 512);
 score = minim.loadSample("Score.aiff", 512);
 start = minim.loadSample("Start.aiff", 512);
 count = minim.loadFile("Countr.wav", 2048);

 tuioClient = new TuioProcessing(this);

 Fisica.init(this);

 world = new FWorld();
 world.setGravity(0,0);

 rs = int(random(4));

 85

 rdist = int(random(4));
 rdispR = int(random(3));

 target_1 = new FCircle(randSize[rs]);
 target_1.setPosition(randDispRed[rdispR], randDist[rdist]);
 target_1.setFill(255,0,0);
 target_1.setNoStroke();
 target_1.setStaticBody(true);
 world.add(target_1);

 rdispB = int(random(3));

 target_2 = new FCircle(randSize[rs]);
 target_2.setPosition(randDispBlu[rdispB], randDist[rdist]);
 target_2.setFill(0,0,255);
 target_2.setNoStroke();
 target_2.setStaticBody(true);

 if(FULL_SCREEN)
 size(1024, 768, OPENGL); // <-- resolution of the other screen here
 else
 size(1024,768, OPENGL); // <-- whatever fits the desktop

frameRate(60);

 if(DUAL_VIEW)
 {
 delay(5000); // wait for the window to be set up...
 frame.setLocation(screen.width, 0); // Move it on the other screen
 }
 else
 {
 frame.setLocation(0, 0);
 }

 // disable 2xFSAA (enabled by default in newer Processings)
 hint(DISABLE_OPENGL_2X_SMOOTH);
 // hint(ENABLE_OPENGL_4X_SMOOTH)

 hint(DISABLE_OPENGL_ERROR_REPORT);
 hint(DISABLE_DEPTH_TEST);

 // Enable GL_*_SMOOTH hints
 smooth();

 noStroke();
 fill(0);

 hint(ENABLE_NATIVE_FONTS);
 font = createFont("Arial", 32);
 scale_factor = height/table_size;

 strokeWeight(4); // nicer

 // an instance of the TuioClient
 // since we add "this" class as an argument, the TuioClient expects
 // an implementation of the TUIO callback methods (see below)

 86

 // 3333 is default in reactivision (and due to a bug, it seems that it can NOT be changed ?)
 //tuioClient = new TuioProcessing(this, 3333);

 my_obj = new TuioObject(0,0,0,0,0);

output.println("ID_01\tMin\tSec\tMillis\tRed\tBlu\tTuiXpos\tTuiYpos\tAngle\tContact\tTargetX\tTar
getY\tTargetWidth\tBallX\tBallY");

 CalibrationLoad("calibrationS2_M.dat");
}

//===
============
// within the draw method we retrieve an array of TuioObject and TuioCursor
// from the TuioClient and then loop over both lists to draw the graphical feedback.
void draw()
{
 fill(0,alfa);
 noStroke();
 rect(0,0,width,height);

ApplyCalibrationMatrix();

 int milliseconds = (millis() - startingTime);
 int seconds = (millis() - startingTime) / 1000;
 int minutes = seconds / 60;

 if (seconds == totalTime){
 state = END;
 output.close();
 }
 if (seconds == totalTime - 9){
 count.play();
 }

 switch(state){
 case START:
 startSplash();
 drawAnimatedBall();
 break;
 case R:
 drawBall1();
 drawScore();
 drawLine();
 targetWidth = randSize[rs];
 targetX = randDispRed[rdispR];
 targetY = randDist[rdist];
 if(ball1Exists || ball2Exists){
 output.println("\t"+minutes+"\t" +seconds+"\t"+(millis() -
ballTime)+"\t"+red_state+"\t"+blu_state+"\t"+my_obj.getScreenX(width)+"\t"+my_obj.getScreenY
(height)+"\t"
 +int((my_obj.getAngleDegrees()*-1)
+90)+"\t"+contact_p_b+"\t"+targetX+"\t"+targetY+"\t"+targetWidth+"\t\t"+int(ballPosX*pow(10,
2))/pow(10,2)+"\t"+int(ballPosY*pow(10,2))/pow(10,2));
 output.flush();
 }

 87

 break;
 case B:
 drawBall2();
 drawScore();
 drawLine();
 targetWidth = randSize[rs];
 targetX = randDispBlu[rdispB];
 targetY = randDist[rdist];
 if(ball1Exists || ball2Exists){
 output.println("\t"+minutes+"\t" +seconds+"\t"+(millis() -
ballTime)+"\t"+red_state+"\t"+blu_state+"\t"+my_obj.getScreenX(width)+"\t"+my_obj.getScreenY
(height)+"\t"
 +int((my_obj.getAngleDegrees()*-1)
+90)+"\t"+contact_p_b+"\t"+targetX+"\t"+targetY+"\t"+targetWidth+"\t\t"+int(ballPosX*pow(10,
2))/pow(10,2)+"\t"+int(ballPosY*pow(10,2))/pow(10,2));
 output.flush();
 }
 break;
 case END:
 endSplash();
 }
if(g_calibration_mode > 0)
{
 DrawCalibrationGrid();
 }

}
void drawBall1() {
 if (ball1Exists){
 ballPosX = ball1.getX();
 ballPosY = ball1.getY();
 if ((ballPosY < 30 || ballPosY > 760) || (ballPosX < 100 || ballPosX > 900)){
 world.remove(ball1);
 ball1Exists = false;
 }
 }
 if (state == R){
 if ((frameCount % 240) == 0) {
 ball1 = new FCircle(10);
 ball1.setGroupIndex(-1);
 ball1.setNoStroke();
 ball1.setFill(255,0,0);
 ball1.setPosition(width/2,50);
 ball1.setVelocity(0,300);
 ball1.setRestitution(1);
 ball1.setDamping(0);
 world.add(ball1);
 ballTime = millis() - playingTime;
 ball1Exists = true;
 ball.trigger();
 }
 world.step();
 world.draw(this);
 }
 }

 void drawBall2() {
 if (ball2Exists){

 88

 ballPosX = ball2.getX();
 ballPosY = ball2.getY();
 if ((ballPosY < 30 || ballPosY > 760) || (ballPosX < 100 || ballPosX > 900)){
 world.remove(ball2);
 ball2Exists = false;
 }
 }
 if (state == B){
 if ((frameCount % 240) == 0) {
 ball2 = new FCircle(10);
 ball2.setGroupIndex(-1);
 ball2.setNoStroke();
 ball2.setFill(0,0,255);
 ball2.setPosition(width/2,50);
 ball2.setVelocity(0,300);
 ball2.setRestitution(1);
 ball2.setDamping(0);
 world.add(ball2);
 ballTime = millis() - playingTime;
 ball2Exists = true;
 ball.trigger();
 }
 world.step();
 world.draw(this);
 }
 }

 void drawLine(){
 noFill();
 stroke(255,150);
 ellipse(width/2,550,150,150);
}

void updateScore(int scorer){
 if(scorer == RED){
 red_state++;
 score.trigger();
 }
 if(scorer == BLU){
 blu_state++;
 score.trigger();
 }
}

void drawScore() {
 textFont(adore,32);
 fill(255,0,0);
 text(red_state, 335, 650);
 fill(0,0,255);
 text(blu_state, 672, 650);
}

void drawAnimatedBall(){
 fill(255,0,0);
 ellipse(px,py,10,10);

 px = width/2 + cos(radians(angle))*(radius/1.5);

 89

 py = 550 + sin(radians(angle))*(radius/1.5);

 angle2 = 0;

 for (int i = 0; i < width; i++){
 px2 = width/8 + cos(radians(angle2))*(radius/2);
 py2 = width/8 + sin(radians(angle2))*(radius/2);
 angle2 -= frequency2;
 }

 angle -= frequency;
 x += 1;
}

void addTuioCursor(TuioCursor tcur) {
if (!is_a && !is_b)
{ a = tcur;
 is_a = true;
 return;
}
if (!is_a && is_b)
{ a = tcur;
 is_a = true;
 is_t = true;
 //calculate x,y,angle of my_obj
 float x = (a.getX() + b.getX())/2.0;
 float y = (a.getY() + b.getY())/2.0;
 float angle = atan2(a.getX() - b.getX(),+ (b.getY() - a.getY())) - PI/2.0;
 my_obj.update(new TuioTime(frameCount),x,y,angle);
 //addTuioObject(my_obj);
 paddle = new FBox(60, 15);
 paddle.setNoStroke();
 paddle.setFill(255);
 paddle.setStaticBody(true);
 paddle.setRestitution(1);
 paddle.setPosition(my_obj.getScreenX(width),my_obj.getScreenY(height));
 world.add(paddle);
 return;
}
if (is_a && is_b)
{return; }
if (is_a && !is_b)
{ b = tcur;
 is_b = true;
 is_t = true;
 //calculate x,y,angle of my_obj
 float x = (a.getX() + b.getX())/2.0;
 float y = (a.getY() + b.getY())/2.0;
 float angle = atan2(a.getX() - b.getX(),+ (b.getY() - a.getY())) - PI/2.0;;
 my_obj.update(new TuioTime(frameCount),x,y,angle);
 //addTuioObject(my_obj);
 paddle = new FBox(60, 15);
 paddle.setNoStroke();
 paddle.setFill(255);
 paddle.setStaticBody(true);
 paddle.setRestitution(1);
 paddle.setPosition(my_obj.getScreenX(width),my_obj.getScreenY(height));
 world.add(paddle);

 90

 return;
 }
 }

void removeTuioCursor(TuioCursor tcur){
if (is_a && !is_b){
 is_a = false;
 //removeTuioObject(my_obj);
 world.remove(paddle);
 return;
}
if (!is_a && is_b){
 is_b = false;
 //removeTuioObject(my_obj);
 world.remove(paddle);
 return;
}
if (!is_a && !is_b){
 return;
 }
if (is_a && is_b){
 is_b = false;
 //removeTuioObject(my_obj);
 world.remove(paddle);
 return;
 }
 }

/*void addTuioObject(TuioObject my_obj){
 paddle = new FBox(60, 15);
 paddle.setNoStroke();
 paddle.setFill(255);
 paddle.setStaticBody(true);
 paddle.setRestitution(1);
 paddle.setPosition(my_obj.getScreenX(width),my_obj.getScreenY(height));
 }*/

void updateTuioCursor (TuioCursor tcur){
 if (is_a && is_b){
 float x = (a.getX() + b.getX())/2.0;
 float y = (a.getY() + b.getY())/2.0;
 float angle = atan2(a.getX() - b.getX(),b.getY() - a.getY()) - PI/2.0*-1;
 my_obj.update(new TuioTime(frameCount),x,y,angle);
 paddle.setRotation(my_obj.getAngle());
 paddle.setPosition(my_obj.getScreenX(width),my_obj.getScreenY(height));
 //updateTuioObject(my_obj);
 }
}

/*void updateTuioObject (TuioObject my_obj){
 paddle.setRotation(my_obj.getAngle());
 paddle.setPosition(my_obj.getScreenX(width),my_obj.getScreenY(height));
}

void removeTuioObject(TuioObject my_obj) {
 if (is_a && !is_b){
 is_a = false;

 91

 removeTuioObject(my_obj);
 world.remove(paddle);
 return;
 }
 if (!is_a && is_b){
 is_b = false;
 removeTuioObject(my_obj);
 world.remove(paddle);
 return;
 }
 if (!is_a && !is_b){
 return;
 }
 is_b = false;
 removeTuioObject(my_obj);
 world.remove(paddle);
 return;
 } */

void contactStarted(FContact contact) {
 FBody body1 = contact.getBody1();
 FBody body2 = contact.getBody2();

 if (contact.getBody1() == paddle){
 contact_p_b += 1;
 bop.trigger();
 }else{
 contact_p_b = 0;
 }

 FBody b = null;
 if (contact.getBody1() == target_1 || contact.getBody1() == target_2) {
 b = contact.getBody2();
 }
 if (b == null) {
 return;
 }

 world.remove(b);

 }

void contactResult(FContactResult result) {
 if (result.getBody1() == target_1 && result.getBody2() == ball1){
 updateScore(RED);
 ball1Exists = false;
 state = B;
 }
 if (result.getBody1() == target_2 && result.getBody2() == ball2){
 updateScore(BLU);
 ball2Exists = false;
 state = R;
 }

 if (result.getBody1() != paddle && result.getBody1() == target_1){
 rdist = int(random(4));

 92

 rdispR = int(random(3));
 rs = int(random(4));
 world.remove(target_1);
 target_2 = new FCircle(randSize[rs]);
 target_2.setPosition(randDispBlu[rdispB], randDist[rdist]);
 target_2.setFill(0,0,255);
 target_2.setNoStroke();
 target_2.setStaticBody(true);
 world.add(target_2);
 }
 if (result.getBody1() != paddle && result.getBody1() == target_2){
 rdist = int(random(4));
 rdispB = int(random(3));
 rs = int(random(4));
 world.remove(target_2);
 target_1 = new FCircle(randSize[rs]);
 target_1.setPosition(randDispRed[rdispR], randDist[rdist]);
 target_1.setFill(255,0,0);
 target_1.setNoStroke();
 target_1.setStaticBody(true);
 world.add(target_1);
 }

}

void startSplash(){
 textFont(f,25);
 fill(255);
 textAlign(CENTER);
 text("You're about to start the experiment.",width/2 , 190);
 textFont(f,15);
 fill(255);
 textAlign(CENTER);
 text("You will see RED and BLU circles of different size appearing on the screen in
series,",width/2 , 230);
 text("RED and BLU balls will drop from the center of the screen alternately.",width/2 , 260);
 text("Your task will be to intercept the balls with the white paddle, and throw them toward the
circles.",width/2 , 290);
 textFont(f,20);
 fill(255,0,0);
 textAlign(CENTER);
 text("Try to be as accurate and as precise as possible.",width/2 , 320);
 text("Try to hit as many circles as possible.",width/2 , 350);
 fill(255);
 text("You will have 5 minutes on the whole to accomplish the task.",width/2 , 380);
 textFont(f,20);
 fill(255);
 textAlign(CENTER);
 text("Please try to be always concentrated.",width/2 , 410);
 textFont(f,20);
 fill(255);
 textAlign(CENTER);
 text("To start the experiment place the fingers on the white paddle.",width/2 , 440);
 noStroke();
 fill(255);
 rect(width/2-30,550-5,60,10);
 if(is_t == true){
 red_state = 0;

 93

 blu_state = 0;
 state = R;
 alfa = 200;
 totalTime = 350;
 start.trigger();
 startingTime = millis();
 playingTime = millis() - startingTime;
 }
}
void endSplash() {
 fill(255);
 textFont(adore,22);
 textAlign(CENTER);
 text("Time elapsed", width/2, height/2);
 text("Thank you for participating ;)", width/2, height/2 + 30);
 }

void stop()
{
 bop.close();
 ball.close();
 score.close();
 start.close();
 count.close();
 minim.stop();

 super.stop();
}

1.2 Processing code for application used in Task 1,
implementation of Tangible control

import fullscreen.*;
import processing.opengl.*;
import javax.media.opengl.GL;
import fisica.*;
import ddf.minim.*;
import TUIO.*;

PrintWriter output;

Minim minim;
AudioSample bop;
AudioSample ball;
AudioSample score;
AudioSample start;
AudioPlayer count;

FWorld world;
FBox paddle;
FCircle target_1, target_2;
FCircle ball1;
FCircle ball2;

TuioProcessing tuioClient;
TuioObject myobj;

 94

boolean is_t = false;
boolean ball1Exists = false;
boolean ball2Exists = false;

FullScreen fs;

PGraphicsOpenGL pgl;
GL gl;

float px,py,px2,py2;
float angle,angle2;
float radius = 100;
float frequency = 3;
float frequency2 = 3;
float x, x2;
float alfa = 50;

final int RED = 1;
final int BLU = 0;

final int START = 1;
final int R = 2;
final int B = 3;
final int END = 0;

int playingTime;
int ballTime;
int totalTime;
int startingTime;
int contact_p_b = 0;
int state;
int red_state;
int blu_state;
int[] randDist = {200,300,400,450};
int[] randDispRed = {300,400,490};
int[] randDispBlu = {550,650,740};
int[] randSize = {10,15,25,30};
int targetX;
int targetY;
int rdist;
int rdispR;
int rdispB;
int rs;
int targetWidth;
float ballPosX;
float ballPosY;

PFont f;
PFont a;

static final boolean FULL_SCREEN = true;
//static final boolean DUAL_VIEW = true;

//static final boolean FULL_SCREEN = false;
static final boolean DUAL_VIEW = false;

static final boolean DEBUG = false;

 95

static final float M_PI = (float)Math.PI;
static final float M_PI2 = (float)Math.PI*2.0;

//
// Calibration values
//
int g_calibration_mode = 0;

static final int OFFSET_XY = 1;
static final int ROTATE_XY = 2;
static final int ROTATE_Z = 3;
static final int SCALE_XY = 4;

float g_ax = 0.0, g_ay = 0.0, g_az = 0.0;
float g_sx = 1.0, g_sy = 1.0;
float g_ox = 0.0, g_oy = 0.0;

// Load / Store Calibration Parameters
// Thx to http://www.vbforums.com/showthread.php?t=308145
void CalibrationSave(String filename)
{
float[] params = { g_ax, g_ay, g_az, g_sx, g_sy, g_ox, g_oy };

 try {
 FileOutputStream fos = new FileOutputStream(filename);
 ObjectOutputStream out = new ObjectOutputStream(fos);
 out.writeObject(params);
 out.flush();
 out.close();
 println("Calibration file saved.");
 }
 catch (IOException e)
 {
 println(e);
 }
}

void CalibrationLoad(String filename)
{
 try {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream in = new ObjectInputStream(fis);
 float[] p = (float[])in.readObject();

 g_ax = p[0];
 g_ay = p[1];
 g_az = p[2];
 g_sx = p[3];
 g_sy = p[4];
 g_ox = p[5];
 g_oy = p[6];

 in.close();

 96

 println("Calibration file loaded.");
 }
 catch (Exception e)
 {
 println(e);
 }
}

void DrawCalibrationGrid()
{
 float tx = width/2.5;
 float ty = height/2.5;
 float tz = -1;

// stroke(0,256,0);
// fill(0,256,0);
stroke(255);
fill(255);

 for(int i=0; i<7; i++)
 {
 float ix = width*i/6.0;
 float iy = height*i/6.0;
 line(ix, 0, ix, height);
 line(0, iy, width, iy);
 }

 stroke(255,0,0);
 fill(255,0,0);

 if(g_calibration_mode == OFFSET_XY)
 text("> OFFSET XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_XY)
 text("> ROTATE XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_Z)
 text("> ROTATE Z <", tx, ty, tz);

 if(g_calibration_mode == SCALE_XY)
 text("> SCALE XY <", tx, ty, tz);
}

void keyPressed()
{

if(key == 'r') // Reset
{
 g_ax = 0.0; g_ay = 0.0; g_az = 0.0;
 g_sx = 1.0; g_sy = 1.0;
 g_ox = 0.0; g_oy = 0.0;
}

if(key == 's') // Save to file
{

 97

 CalibrationSave("calibration.dat");
}

if(key == 'l') // Load from file
{
 CalibrationLoad("calibration.dat");
}

if(key == ENTER)
{
 g_calibration_mode = (g_calibration_mode + 1) % 5;
}

if (key != CODED)
{
 return;
}

if(g_calibration_mode == OFFSET_XY)
{
 if (keyCode == LEFT) g_ox-=2.5;
 if (keyCode == RIGHT) g_ox+=2.5;
 if (keyCode == UP) g_oy-=2.5;
 if (keyCode == DOWN) g_oy+=2.5;
}
if(g_calibration_mode == ROTATE_XY)
{
 if (keyCode == LEFT) g_ax-=0.025;
 if (keyCode == RIGHT) g_ax+=0.025;
 if (keyCode == UP) g_ay-=0.025;
 if (keyCode == DOWN) g_ay+=0.025;
}
if(g_calibration_mode == ROTATE_Z)
{
 if (keyCode == LEFT) g_az-=0.0125;
 if (keyCode == RIGHT) g_az+=0.0125;
}
if(g_calibration_mode == SCALE_XY)
{
 if (keyCode == LEFT) g_sx-=0.025;
 if (keyCode == RIGHT) g_sx+=0.025;
 if (keyCode == UP) g_sy-=0.025;
 if (keyCode == DOWN) g_sy+=0.025;
}

}

// Original idea by Daniel Gallardo
void ApplyCalibrationMatrix()
{
int g_w = 1024;
int g_h = 768;

float fov = PI/3.0;
float cameraZ = (height/2.0) / tan(fov/2.0);

 98

//perspective(fov, float(g_w)/float(g_h),
// 0.0, 100.0);

 translate(g_ox,
 g_oy,
 -4.0f);

 translate(g_w/2, g_w/2, 0);

 rotateX(g_ax);
 rotateY(g_ay);

 rotateZ(g_az);

 scale(g_sx, g_sy, 1);

 translate(-g_w/2, -g_h/2, 0);

}

// these are some helper variables which are used
// to create scalable graphical feedback
float cursor_size = 20;
float object_size = 40;
float table_size = 480;
float scale_factor = 1.2;
PFont font;

// Don't show frame, as in http://processing.org/hacks/hacks:undecoratedframe
void init()
{
 if(FULL_SCREEN)
 {
 frame.removeNotify();
 frame.setUndecorated(true);
 frame.addNotify();
 }

 super.init();
}

void setup()
{

 output = createWriter("S1_T/ID_12.txt");
 startingTime = millis();
 state = START;

 totalTime = 10000;

 red_state = 0;
 blu_state = 0;
 f = loadFont("Adore64-30.vlw");
 a = loadFont("Verdana-48.vlw");

 99

 textSize(28);

 minim = new Minim(this);

 bop = minim.loadSample("Bop.aiff", 512);
 ball = minim.loadSample("Ball.aiff", 512);
 score = minim.loadSample("Score.aiff", 512);
 start = minim.loadSample("Start.aiff", 512);
 count = minim.loadFile("Countr.wav", 2048);

 tuioClient = new TuioProcessing(this);

 Fisica.init(this);

 world = new FWorld();
 world.setGravity(0,0);

 rs = int(random(4));

 rdist = int(random(4));
 rdispR = int(random(3));

 target_1 = new FCircle(randSize[rs]);
 target_1.setPosition(randDispRed[rdispR], randDist[rdist]);
 target_1.setFill(255,0,0);
 target_1.setNoStroke();
 target_1.setStaticBody(true);
 world.add(target_1);

 rdispB = int(random(3));

 target_2 = new FCircle(randSize[rs]);
 target_2.setPosition(randDispBlu[rdispB], randDist[rdist]);
 target_2.setFill(0,0,255);
 target_2.setNoStroke();
 target_2.setStaticBody(true);

 if(FULL_SCREEN)
 size(1024, 768, OPENGL); // <-- resolution of the other screen here
 else
 size(1024,768, OPENGL); // <-- whatever fits the desktop

frameRate(60);

 if(DUAL_VIEW)
 {
 delay(5000); // wait for the window to be set up...
 frame.setLocation(screen.width, 0); // Move it on the other screen
 }
 else
 {
 frame.setLocation(0, 0);
 }

 // disable 2xFSAA (enabled by default in newer Processings)
 hint(DISABLE_OPENGL_2X_SMOOTH);
 // hint(ENABLE_OPENGL_4X_SMOOTH)

 100

 hint(DISABLE_OPENGL_ERROR_REPORT);
 hint(DISABLE_DEPTH_TEST);

 // Enable GL_*_SMOOTH hints
 smooth();

 noStroke();
 fill(0);

 hint(ENABLE_NATIVE_FONTS);
 font = createFont("Arial", 32);
 scale_factor = height/table_size;

 strokeWeight(4); // nicer

 // an instance of the TuioClient
 // since we add "this" class as an argument, the TuioClient expects
 // an implementation of the TUIO callback methods (see below)

 // 3333 is default in reactivision (and due to a bug, it seems that it can NOT be changed ?)
 //tuioClient = new TuioProcessing(this, 3333);

 myobj = new TuioObject(0,0,0,0,0);

output.println("ID_01\tMin\tSec\tMillis\tRed\tBlu\tTuiXpos\tTuiYpos\tAngle\tContact\tTargetX\tTar
getY\tTargetWidth\tBallX\tBallY");

 CalibrationLoad("calibration.dat");

}

//===
============
// within the draw method we retrieve an array of TuioObject and TuioCursor
// from the TuioClient and then loop over both lists to draw the graphical feedback.
void draw()
{
 fill(0,alfa);
 noStroke();
 rect(0,0,width,height);

ApplyCalibrationMatrix();

 int milliseconds = (millis() - startingTime);
 int seconds = (millis() - startingTime) / 1000;
 int minutes = seconds / 60;

 if (seconds == totalTime){
 state = END;
 output.close();
 }
 if (seconds == totalTime - 9){
 count.play();
 }

 101

 switch(state){
 case START:
 startSplash();
 drawAnimatedBall();
 break;
 case R:
 drawBall1();
 drawScore();
 drawLine();
 targetWidth = randSize[rs];
 targetX = randDispRed[rdispR];
 targetY = randDist[rdist];
 if(ball1Exists || ball2Exists){
 output.println("\t"+minutes+"\t" +seconds+"\t"+(millis() -
ballTime)+"\t"+red_state+"\t"+blu_state+"\t"+myobj.getScreenX(width)+"\t"+myobj.getScreenY(he
ight)+"\t"

+int(myobj.getAngleDegrees())+"\t"+contact_p_b+"\t"+targetX+"\t"+targetY+"\t"+targetWidth+"\
t\t"+int(ballPosX*pow(10,2))/pow(10,2)+"\t"+int(ballPosY*pow(10,2))/pow(10,2));
 output.flush();
 }
 break;
 case B:
 drawBall2();
 drawScore();
 drawLine();
 targetWidth = randSize[rs];
 targetX = randDispBlu[rdispB];
 targetY = randDist[rdist];
 if(ball1Exists || ball2Exists){
 output.println("\t"+minutes+"\t" +seconds+"\t"+(millis() -
ballTime)+"\t"+red_state+"\t"+blu_state+"\t"+myobj.getScreenX(width)+"\t"+myobj.getScreenY(he
ight)+"\t"

+int(myobj.getAngleDegrees())+"\t"+contact_p_b+"\t"+targetX+"\t"+targetY+"\t"+targetWidth+"\
t\t"+int(ballPosX*pow(10,2))/pow(10,2)+"\t"+int(ballPosY*pow(10,2))/pow(10,2));
 output.flush();
 }
 break;
 case END:
 endSplash();
 }
if(g_calibration_mode > 0)
{
 DrawCalibrationGrid();
 }

}

void drawBall1() {
 if (ball1Exists){
 ballPosX = ball1.getX();
 ballPosY = ball1.getY();
 if ((ballPosY < 30 || ballPosY > 760) || (ballPosX < 100 || ballPosX > 900)){
 world.remove(ball1);
 ball1Exists = false;
 }
 }

 102

 if (state == R){
 if ((frameCount % 240) == 0) {
 ball1 = new FCircle(10);
 ball1.setGroupIndex(-1);
 ball1.setNoStroke();
 ball1.setFill(255,0,0);
 ball1.setPosition(width/2,50);
 ball1.setVelocity(0,300);
 ball1.setRestitution(1);
 ball1.setDamping(0);
 world.add(ball1);
 ballTime = millis() - playingTime;
 ball1Exists = true;
 ball.trigger();
 }
 world.step();
 world.draw(this);
 }
 }

void drawBall2() {
 if (ball2Exists){
 ballPosX = ball2.getX();
 ballPosY = ball2.getY();
 if ((ballPosY < 30 || ballPosY > 760) || (ballPosX < 100 || ballPosX > 900)){
 world.remove(ball2);
 ball2Exists = false;
 }
 }
 if (state == B){
 if ((frameCount % 240) == 0) {
 ball2 = new FCircle(10);
 ball2.setGroupIndex(-1);
 ball2.setNoStroke();
 ball2.setFill(0,0,255);
 ball2.setPosition(width/2,50);
 ball2.setVelocity(0,300);
 ball2.setRestitution(1);
 ball2.setDamping(0);
 world.add(ball2);
 ballTime = millis() - playingTime;
 ball2Exists = true;
 ball.trigger();
 }
 }
 world.step();
 world.draw(this);
 }

void updateScore(int scorer){
 if(scorer == RED){
 red_state++;
 score.trigger();
 }
 if(scorer == BLU){
 blu_state++;
 score.trigger();
 }

 103

}

void drawScore() {
 textFont(f,32);
 fill(255,0,0);
 text(red_state, 335, 700);
 fill(0,0,255);
 text(blu_state, 672, 700);
}

void drawAnimatedBall(){
 fill(255,0,0);
 ellipse(px,py,10,10);

 px = width/2 + cos(radians(angle))*(radius/1.5);

 py = 550 + sin(radians(angle))*(radius/1.5);

 angle2 = 0;

 for (int i = 0; i < width; i++){
 px2 = width/8 + cos(radians(angle2))*(radius/2);
 py2 = width/8 + sin(radians(angle2))*(radius/2);
 angle2 -= frequency2;
 }

 angle -= frequency;
 x += 1;
}

void drawLine(){
 noFill();
 stroke(255,150);
 ellipse(width/2,550,150,150);
}

void contactStarted(FContact contact) {
 FBody body1 = contact.getBody1();
 FBody body2 = contact.getBody2();

 if (contact.getBody1() == paddle){
 contact_p_b += 1;
 bop.trigger();
 }else{
 contact_p_b = 0;
 }

 FBody b = null;
 if (contact.getBody1() == target_1 || contact.getBody1() == target_2) {
 b = contact.getBody2();
 }
 if (b == null) {
 return;
 }

 world.remove(b);

 }

 104

void contactResult(FContactResult result) {
 if (result.getBody1() == target_1 && result.getBody2() == ball1){
 updateScore(RED);
 ball1Exists = false;
 state = B;
 }
 if (result.getBody1() == target_2 && result.getBody2() == ball2){
 updateScore(BLU);
 ball2Exists = false;
 state = R;
 }

 if (result.getBody1() != paddle && result.getBody1() == target_1){
 rdist = int(random(4));
 rdispR = int(random(3));
 rs = int(random(4));
 world.remove(target_1);;
 target_2 = new FCircle(randSize[rs]);
 target_2.setPosition(randDispBlu[rdispB], randDist[rdist]);
 target_2.setFill(0,0,255);
 target_2.setNoStroke();
 target_2.setStaticBody(true);
 world.add(target_2);
 }
 if (result.getBody1() != paddle && result.getBody1() == target_2){
 rdist = int(random(4));
 rdispB = int(random(3));
 rs = int(random(4));
 world.remove(target_2);
 target_1 = new FCircle(randSize[rs]);
 target_1.setPosition(randDispRed[rdispR], randDist[rdist]);
 target_1.setFill(255,0,0);
 target_1.setNoStroke();
 target_1.setStaticBody(true);
 world.add(target_1);
 }

}

void addTuioObject(TuioObject tobj) {
 is_t = true;
 paddle = new FBox(50,15);
 paddle.setFill(255);
 paddle.setNoStroke();
 paddle.setRestitution(1);
 paddle.setStaticBody(true);
 world.add(paddle);
}

void updateTuioObject (TuioObject tobj){
 myobj.update(new TuioTime(frameCount),tobj.getX(),tobj.getY(),tobj.getAngle());
 paddle.setRotation(tobj.getAngle());
 paddle.setPosition(tobj.getScreenX(width),tobj.getScreenY(height));
 paddle.setWidth(60);
}

void removeTuioObject (TuioObject tobj) {

 105

 world.remove(paddle);
}
void startSplash(){
 textFont(a,25);
 fill(255);
 textAlign(CENTER);
 text("You're about to start the experiment.",width/2 , 190);
 textFont(a,15);
 fill(255);
 textAlign(CENTER);
 text("You will see RED and BLU circles of different size appearing on the screen in
series,",width/2 , 230);
 text("RED and BLU balls will drop from the center of the screen alternately.",width/2 , 260);
 text("Your task will be to intercept the balls with the white paddle, and throw them toward the
circles.",width/2 , 290);
 textFont(a,20);
 fill(255,0,0);
 textAlign(CENTER);
 text("Try to be as accurate and as precise as possible.",width/2 , 320);
 text("Try to hit as many circles as possible.",width/2 , 350);
 fill(255);
 text("You will have 5 minutes on the whole to accomplish the task.",width/2 , 380);
 textFont(a,20);
 fill(255);
 textAlign(CENTER);
 text("Please try to be always concentrated.",width/2 , 410);
 textFont(a,20);
 fill(255);
 textAlign(CENTER);
 text("To start the experiment place the tangible on the white paddle.",width/2 , 440);
 noStroke();
 fill(255);
 rect(width/2-30,550-5,60,10);
 if(is_t == true){
 red_state = 0;
 blu_state = 0;
 state = R;
 alfa = 200;
 totalTime = 350;
 start.trigger();
 startingTime = millis();
 playingTime = millis() - startingTime;
 }
}
void endSplash() {
 fill(255);
 textFont(f,22);
 textAlign(CENTER);
 text("Time elapsed", width/2, height/2);
 text("Thank you for participating ;)", width/2, height/2 + 30);
 }

void stop()
{
 bop.close();
 ball.close();
 score.close();
 start.close();

 106

 count.close();
 minim.stop();

 super.stop();
}

1.3 Processing code for application used in Task 2,
implementation of Multi-Touch control

import fullscreen.*;
import processing.opengl.*;
import javax.media.opengl.GL;
import ddf.minim.*;
import fisica.*;

import TUIO.*;

PrintWriter output;

Minim minim;
AudioSample bop;
AudioSample ball;
AudioSample score;
AudioSample start;
AudioSample wrong;
AudioPlayer count;

FWorld world;
FBox paddle;
FCircle ball1, ball2;

TuioProcessing tuioClient;

boolean is_t = false;
boolean is_a = false;
boolean is_b = false;

FullScreen fs;

PGraphicsOpenGL pgl;
GL gl;

final int RED = 1;
final int BLU = 0;

final int START = 0;
final int PLAYING = 1;
final int END = 2;

int playingTime;
int totalTime;
int startingTime;
int ballTime;
int state;
int red_state;
int blu_state;

 107

int[] randomVel1 = {600,800,900};
int[] randomVel2 = {1000,1100,1200};
int[] randomVel3 = {1300,1400,1500};
int[] randomPos = {300,350,400,600,650,700};
int[] randomTime = {120,240,480};
int vel;
int randball;
int randpos;
int randtime;
int velCurrent = 0;
int posCurrent = 0;
int ballX;
int ballSpeed;
float ballPosY;
boolean ball1Exists = false;
boolean ball2Exists = false;

float alfa = 50;
float px,py,px2,py2;
float angle,angle2;
float radius = 100;
float frequency = 3;
float frequency2 = 3;
float x;

PFont f;
PFont adore;

TuioCursor a;
TuioCursor b;
TuioObject my_obj;

static final boolean FULL_SCREEN = true;
//static final boolean DUAL_VIEW = true;

//static final boolean FULL_SCREEN = false;
static final boolean DUAL_VIEW = false;

static final boolean DEBUG = false;

static final float M_PI = (float)Math.PI;
static final float M_PI2 = (float)Math.PI*2.0;

//
// Calibration values
//
int g_calibration_mode = 0;

static final int OFFSET_XY = 1;
static final int ROTATE_XY = 2;
static final int ROTATE_Z = 3;
static final int SCALE_XY = 4;

float g_ax = 0.0, g_ay = 0.0, g_az = 0.0;
float g_sx = 1.0, g_sy = 1.0;
float g_ox = 0.0, g_oy = 0.0;

 108

// Load / Store Calibration Parameters
// Thx to http://www.vbforums.com/showthread.php?t=308145
void CalibrationSave(String filename)
{
float[] params = { g_ax, g_ay, g_az, g_sx, g_sy, g_ox, g_oy };

 try {
 FileOutputStream fos = new FileOutputStream(filename);
 ObjectOutputStream out = new ObjectOutputStream(fos);
 out.writeObject(params);
 out.flush();
 out.close();
 println("Calibration file saved.");
 }
 catch (IOException e)
 {
 println(e);
 }
}

void CalibrationLoad(String filename)
{
 try {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream in = new ObjectInputStream(fis);
 float[] p = (float[])in.readObject();

 g_ax = p[0];
 g_ay = p[1];
 g_az = p[2];
 g_sx = p[3];
 g_sy = p[4];
 g_ox = p[5];
 g_oy = p[6];

 in.close();

 println("Calibration file loaded.");
 }
 catch (Exception e)
 {
 println(e);
 }
}

void DrawCalibrationGrid()
{
 float tx = width/2.5;
 float ty = height/2.5;
 float tz = -1;

// stroke(0,256,0);

 109

// fill(0,256,0);
stroke(255);
fill(255);

 for(int i=0; i<7; i++)
 {
 float ix = width*i/6.0;
 float iy = height*i/6.0;
 line(ix, 0, ix, height);
 line(0, iy, width, iy);
 }

 stroke(255,0,0);
 fill(255,0,0);

 if(g_calibration_mode == OFFSET_XY)
 text("> OFFSET XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_XY)
 text("> ROTATE XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_Z)
 text("> ROTATE Z <", tx, ty, tz);

 if(g_calibration_mode == SCALE_XY)
 text("> SCALE XY <", tx, ty, tz);
}

void keyPressed()
{

if(key == 'r') // Reset
{
 g_ax = 0.0; g_ay = 0.0; g_az = 0.0;
 g_sx = 1.0; g_sy = 1.0;
 g_ox = 0.0; g_oy = 0.0;
}

if(key == 's') // Save to file
{
 CalibrationSave("calibrationS2_M.dat");
}

if(key == 'l') // Load from file
{
 CalibrationLoad("calibrationS2_M.dat");
}

if(key == ENTER)
{
 g_calibration_mode = (g_calibration_mode + 1) % 5;
}

if (key != CODED)

 110

{
 return;
}

if(g_calibration_mode == OFFSET_XY)
{
 if (keyCode == LEFT) g_ox-=2.5;
 if (keyCode == RIGHT) g_ox+=2.5;
 if (keyCode == UP) g_oy-=2.5;
 if (keyCode == DOWN) g_oy+=2.5;
}
if(g_calibration_mode == ROTATE_XY)
{
 if (keyCode == LEFT) g_ax-=0.025;
 if (keyCode == RIGHT) g_ax+=0.025;
 if (keyCode == UP) g_ay-=0.025;
 if (keyCode == DOWN) g_ay+=0.025;
}
if(g_calibration_mode == ROTATE_Z)
{
 if (keyCode == LEFT) g_az-=0.0125;
 if (keyCode == RIGHT) g_az+=0.0125;
}
if(g_calibration_mode == SCALE_XY)
{
 if (keyCode == LEFT) g_sx-=0.025;
 if (keyCode == RIGHT) g_sx+=0.025;
 if (keyCode == UP) g_sy-=0.025;
 if (keyCode == DOWN) g_sy+=0.025;
}

}

// Original idea by Daniel Gallardo
void ApplyCalibrationMatrix()
{
int g_w = 1024;
int g_h = 768;

float fov = PI/3.0;
float cameraZ = (height/2.0) / tan(fov/2.0);

//perspective(fov, float(g_w)/float(g_h),
// 0.0, 100.0);

 translate(g_ox,
 g_oy,
 -4.0f);

 translate(g_w/2, g_w/2, 0);

 rotateX(g_ax);
 rotateY(g_ay);

 rotateZ(g_az);

 scale(g_sx, g_sy, 1);

 111

 translate(-g_w/2, -g_h/2, 0);

}

// these are some helper variables which are used
// to create scalable graphical feedback
float cursor_size = 20;
float object_size = 40;
float table_size = 480;
float scale_factor = 1.2;
PFont font;

// Don't show frame, as in http://processing.org/hacks/hacks:undecoratedframe
void init()
{
 if(FULL_SCREEN)
 {
 frame.removeNotify();
 frame.setUndecorated(true);
 frame.addNotify();
 }

 super.init();
}

void setup()
{
 output = createWriter("S2_M/ID_01.txt");
 startingTime = millis();
 state = START;

 totalTime = 10000;

 red_state = 0;
 blu_state = 0;
 adore = loadFont("Adore64-30.vlw");
 f = loadFont("Verdana-48.vlw");
 textSize(28);

 minim = new Minim(this);

 bop = minim.loadSample("Bop.aiff", 512);
 ball = minim.loadSample("Ball.aiff", 512);
 score = minim.loadSample("Score.aiff", 512);
 start = minim.loadSample("Start.aiff", 512);
 wrong = minim.loadSample("Wrong.aiff", 512);
 count = minim.loadFile("Countr.wav", 2048);

 tuioClient = new TuioProcessing(this);

 Fisica.init(this);

 world = new FWorld();

 112

 world.setGravity(0,0);

 if(FULL_SCREEN)
 size(1024, 768, OPENGL); // <-- resolution of the other screen here
 else
 size(1024,768, OPENGL); // <-- whatever fits the desktop

frameRate(60);

 if(DUAL_VIEW)
 {
 delay(5000); // wait for the window to be set up...
 frame.setLocation(screen.width, 0); // Move it on the other screen
 }
 else
 {
 frame.setLocation(0, 0);
 }

 // disable 2xFSAA (enabled by default in newer Processings)
 hint(DISABLE_OPENGL_2X_SMOOTH);
 // hint(ENABLE_OPENGL_4X_SMOOTH)

 hint(DISABLE_OPENGL_ERROR_REPORT);
 hint(DISABLE_DEPTH_TEST);

 // Enable GL_*_SMOOTH hints
 smooth();

 noStroke();
 fill(0);

 hint(ENABLE_NATIVE_FONTS);
 font = createFont("Arial", 32);
 scale_factor = height/table_size;

 strokeWeight(4); // nicer

 // an instance of the TuioClient
 // since we add "this" class as an argument, the TuioClient expects
 // an implementation of the TUIO callback methods (see below)

 // 3333 is default in reactivision (and due to a bug, it seems that it can NOT be changed ?)
 //tuioClient = new TuioProcessing(this, 3333);

 my_obj = new TuioObject(0,0,0,0,0);

output.println("ID_01\tMin\tSec\tMillis\tRed\tBlu\tSpeed\t\tAccel\t\tXpos\tYpos\tBallX\tBallY\tBall
Speed");

 CalibrationLoad("calibrationS2_M.dat");
}

//===
============

 113

// within the draw method we retrieve an array of TuioObject and TuioCursor
// from the TuioClient and then loop over both lists to draw the graphical feedback.
void draw()
{

ApplyCalibrationMatrix();

 fill(0,alfa);
 noStroke();
 rect(0,0,width,height);

 int milliseconds = (millis() - startingTime);
 int seconds = (millis() - startingTime) / 1000;
 int minutes = seconds / 60;

 if (seconds > totalTime){
 state = END;
 output.close();
 }
 if(seconds == totalTime - 8){
 count.play();
 }
 if (seconds > 180){
 ball1.setVelocity(0,randomVel2[vel]);
 ball2.setVelocity(0,randomVel2[vel]);
 ballSpeed = randomVel2[velCurrent];
 }
 if (seconds > 290){
 ball1.setVelocity(0,randomVel3[vel]);
 ball2.setVelocity(0,randomVel3[vel]);
 ballSpeed = randomVel3[velCurrent];
 }

 switch(state) {
 case START:
 startSplash();
 drawAnimatedBall();
 break;
 case PLAYING:
 drawBall();
 //drawBall2();
 drawScore();
 drawLine();
 if(ball1Exists || ball2Exists){
 output.println("\t"+minutes+"\t" +seconds+"\t"+(millis() -
ballTime)+"\t"+red_state+"\t"+blu_state+"\t"

+int(a.getMotionSpeed()*pow(10,2))/pow(10,2)+"\t\t"+int(a.getMotionAccel()*pow(10,2))/pow(10,
2)+"\t\t"
 +my_obj.getScreenX(width)+"\t"+my_obj.getScreenY(height)+"\t"+ballX+
"\t"+int(ballPosY)+"\t"+ballSpeed);
 output.flush();
 }
 break;
 case END:
 endSplash();

 114

 break;

 }

if(g_calibration_mode > 0)
{
 DrawCalibrationGrid();
 }
}

void drawBall() {
if (ball1Exists){
 ballPosY = ball1.getY();
 if (ballPosY > 780){
 world.remove(ball1);
 ball1Exists = false;
 }
 }
 if (ball2Exists){
 ballPosY = ball2.getY();
 if (ballPosY > 780){
 world.remove(ball2);
 ball2Exists = false;
 }
}
 if (((frameCount) % randomTime[randtime]) == 0) {
 vel = int(random(3));
 randball = int(random(10));
 randpos = int(random(6));
 randtime = int(random(3));
 while(true){
 if (vel == velCurrent){
 vel = int(random(3));
 }else{
 velCurrent = vel;
 ballSpeed = randomVel1[velCurrent];
 break;
 }
 }
 while(true){
 if (randpos == posCurrent){
 randpos = int(random(6));
 }else{
 posCurrent = randpos;
 ballX = randomPos[posCurrent];
 break;
 }
 }
 if (randball < 6){
 ball1 = new FCircle(15);
 ball1.setGroupIndex(-1);
 ball1.setNoStroke();
 ball1.setFill(255,0,0);
 ball1.setPosition(randomPos[posCurrent],50);
 ball1.setVelocity(0,randomVel1[velCurrent]);
 ball1.setRestitution(1);
 ball1.setDamping(0);
 world.add(ball1);

 115

 ballTime = millis() - playingTime;
 ball1Exists = true;
 ball.trigger();
 }else{
 ball2 = new FCircle(15);
 ball2.setGroupIndex(-1);
 ball2.setNoStroke();
 ball2.setFill(0,0,255);
 ball2.setPosition(randomPos[randpos],50);
 ball2.setVelocity(0,randomVel1[velCurrent]);
 ball2.setRestitution(1);
 ball2.setDamping(0);
 world.add(ball2);
 ballTime = millis() - playingTime;
 ball2Exists = true;
 ball.trigger();
 }
 }
 world.step();
 world.draw(this);
 }

 void drawLine(){
 noFill();
 stroke(255);
 line(width/2-30,600,width/2+30,600);
 line(width/2,570,width/2,630);
}

void updateScore(int scorer){
 if(scorer == RED){
 red_state++;
 }
 if(scorer == BLU){
 blu_state++;
 }
}

void drawScore() {
 textFont(adore,32);
 fill(255,0,0);
 text(red_state, 207, height/2);
 fill(0,0,255);
 text(blu_state, 800, height/2);
 noFill();
 stroke(255,0,0);
 strokeWeight(2);
}

void drawAnimatedBall(){
 fill(255,0,0);
 ellipse(px,py,10,10);

 px = width/2 + cos(radians(angle))*(radius/1.5);

 py = 600 + sin(radians(angle))*(radius/1.5);

 116

 angle2 = 0;

 for (int i = 0; i < width; i++){
 px2 = width/8 + cos(radians(angle2))*(radius/2);
 py2 = width/8 + sin(radians(angle2))*(radius/2);
 angle2 -= frequency2;
 }

 angle -= frequency;
 x += 1;
}

void addTuioCursor(TuioCursor tcur) {
if (!is_a && !is_b)
{ a = tcur;
 is_a = true;
 return;
}
if (!is_a && is_b)
{ a = tcur;
 is_a = true;
 is_t = true;
 //calculate x,y,angle of my_obj
 float x = (a.getX() + b.getX())/2.0;
 float y = (a.getY() + b.getY())/2.0;
 float angle = atan2(a.getX() - b.getX(),b.getY() - a.getY()) - PI/2.0*-1;
 my_obj.update(new TuioTime(frameCount),x,y,angle);
 //addTuioObject(my_obj);
 paddle = new FBox(60, 15);
 paddle.setNoStroke();
 paddle.setFill(255);
 paddle.setStaticBody(true);
 paddle.setRestitution(1);
 world.add(paddle);
 return;
}
if (is_a && is_b)
{return; }
if (is_a && !is_b)
{ b = tcur;
 is_b = true;
 is_t = true;
 //calculate x,y,angle of my_obj
 float x = (a.getX() + b.getX())/2.0;
 float y = (a.getY() + b.getY())/2.0;
 float angle = atan2(a.getX() - b.getX(),b.getY() - a.getY()) - PI/2.0*-1;
 my_obj.update(new TuioTime(frameCount),x,y,angle);
 //addTuioObject(my_obj);
 paddle = new FBox(60, 15);
 paddle.setNoStroke();
 paddle.setFill(255);
 paddle.setStaticBody(true);
 paddle.setRestitution(1);
 world.add(paddle);
 return;
 }
}

 117

void removeTuioCursor(TuioCursor tcur){
if (is_a && !is_b){
 is_a = false;
 //removeTuioObject(my_obj);
 world.remove(paddle);
 return;
}
if (!is_a && is_b){
 is_b = false;
 //removeTuioObject(my_obj);
 world.remove(paddle);
 return;
}
if (!is_a && !is_b){
 return;
 }
if (is_a && is_b){
 is_b = false;
 //removeTuioObject(my_obj);
 world.remove(paddle);
 return;
 }
 }

/*void addTuioObject(TuioObject my_obj){
 paddle = new FBox(60, 15);
 paddle.setNoStroke();
 paddle.setFill(255);
 paddle.setStaticBody(true);
 paddle.setRestitution(1);
 paddle.setPosition(my_obj.getScreenX(width),my_obj.getScreenY(height));
 }*/

void updateTuioCursor (TuioCursor tcur){
 if (is_a && is_b){
 float x = (a.getX() + b.getX())/2.0;
 float y = (a.getY() + b.getY())/2.0;
 float angle = atan2(a.getX() - b.getX(),b.getY() - a.getY()) - PI/2.0*-1;
 my_obj.update(new TuioTime(frameCount),x,y,angle);
 paddle.setRotation(my_obj.getAngle());
 paddle.setPosition(my_obj.getScreenX(width),my_obj.getScreenY(height));
 //updateTuioObject(my_obj);
 }
}

void contactStarted(FContact contact) {
 FBody body1 = contact.getBody1();
 FBody body2 = contact.getBody2();

 FBody b = null;
 if (contact.getBody1() == paddle) {
 b = contact.getBody2();
 }
 if (b == null) {
 return;
 }

 118

 world.remove(b);
 }

void contactResult(FContactResult result) {
 if ((result.getBody1() == paddle && result.getBody2() == ball1) ||
 (result.getBody2() == paddle && result.getBody1() == ball1)){
 updateScore(RED);
 ball1Exists = false;
 score.trigger();
 } else if ((result.getBody1() == paddle && result.getBody2() == ball2) ||
 (result.getBody2() == paddle && result.getBody1() == ball2)){
 updateScore(BLU);
 ball2Exists = false;
 score.trigger();
 }
 }

void startSplash(){
 int seconds = (millis() - startingTime) / 1000;
 textFont(f,25);
 fill(255);
 textAlign(CENTER);
 text("You're about to start the experiment.",width/2 , 190);
 textFont(f,16);
 fill(255);
 textAlign(CENTER);
 text("RED and BLU balls will drop from the top of the screen at random positions.",width/2 ,
230);
 text("Your task will be to intercept the balls with the white paddle ,",width/2 , 260);
 fill(255,0,0);
 text("Try to be as rapid and as quick as possible.",width/2 , 290);
 text("Try to intercept as many ball as possible.",width/2 , 320);
 fill(255);
 text("You will have 5 minutes on the whole to accomplish the task.",width/2 , 350);
 text("Please try to be always concentrated.",width/2 , 380);
 textFont(f,20);
 fill(255);
 textAlign(CENTER);
 text("To start the experiment place the fingers on the white paddle.",width/2 , 410);
 noStroke();
 fill(255);
 rect(width/2-30,600-5,60,10);
 if(is_t == true){
 red_state = 0;
 blu_state = 0;
 state = PLAYING;
 alfa = 200;
 totalTime = 350;
 startingTime = millis();
 playingTime = millis() - startingTime;
 start.trigger();
 }
}

void endSplash() {
 fill(255);
 textFont(adore,22);

 119

 textAlign(CENTER);
 text("Time elapsed", width/2, height/2);
 text("Thank you for participating ;)", width/2, height/2 + 30);
}

void stop()
{
 bop.close();
 ball.close();
 score.close();
 start.close();
 count.close();
 minim.stop();

 super.stop();
}

1.4 Processing code for application used in Task 2,
implementation of Tangible control

import fullscreen.*;
import processing.opengl.*;
import javax.media.opengl.GL;
import ddf.minim.*;
import fisica.*;

import TUIO.*;

Minim minim;
AudioSample bop;
AudioSample ball;
AudioSample score;
AudioSample start;
AudioSample wrong;
AudioPlayer count;

FWorld world;
FBox paddle;
FCircle ball1, ball2;
FBody body1, body2;

TuioProcessing tuioClient;
TuioObject myobj;

FullScreen fs;

PGraphicsOpenGL pgl;
GL gl;

final int RED = 1;
final int BLU = 0;
final int START = 0;
final int PLAYING = 1;
final int END = 2;

int red_state;

 120

int blu_state;
int g_calibration_mode = 0;
int totalTime;
int startingTime;
int playingTime;
int state;
int ballTime;

int[] randomVel1 = {600,800,900};
int[] randomVel2 = {1000,1100,1200};
int[] randomVel3 = {1300,1400,1500};
int[] randomPos = {300,350,400,600,650,700};
int[] randomTime = {120,240,480};
int vel;
int randball;
int randpos;
int randtime;
int velCurrent = 0;
int posCurrent = 0;
int ballX;
int ballSpeed;
float ballPosY;
boolean ball1Exists = false;
boolean ball2Exists = false;

float g_ax = 0.0, g_ay = 0.0, g_az = 0.0;
float g_sx = 1.0, g_sy = 1.0;
float g_ox = 0.0, g_oy = 0.0;
float alfa = 50;
float px,py,px2,py2;
float angle,angle2;
float radius = 100;
float frequency = 3;
float frequency2 = 3;
float x;

boolean is_t = false;

PFont f;
PFont adore;
PrintWriter output;

static final boolean FULL_SCREEN = true;
//static final boolean DUAL_VIEW = true;

//static final boolean FULL_SCREEN = false;
static final boolean DUAL_VIEW = false;
static final boolean DEBUG = false;

static final float M_PI = (float)Math.PI;
static final float M_PI2 = (float)Math.PI*2.0;
//
// Calibration values
//
static final int OFFSET_XY = 1;
static final int ROTATE_XY = 2;
static final int ROTATE_Z = 3;

 121

static final int SCALE_XY = 4;

// Load / Store Calibration Parameters
// Thx to http://www.vbforums.com/showthread.php?t=308145
void CalibrationSave(String filename)
{
float[] params = { g_ax, g_ay, g_az, g_sx, g_sy, g_ox, g_oy };

 try {
 FileOutputStream fos = new FileOutputStream(filename);
 ObjectOutputStream out = new ObjectOutputStream(fos);
 out.writeObject(params);
 out.flush();
 out.close();
 println("Calibration file saved.");
 }
 catch (IOException e)
 {
 println(e);
 }
}

void CalibrationLoad(String filename)
{
 try {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream in = new ObjectInputStream(fis);
 float[] p = (float[])in.readObject();

 g_ax = p[0];
 g_ay = p[1];
 g_az = p[2];
 g_sx = p[3];
 g_sy = p[4];
 g_ox = p[5];
 g_oy = p[6];

 in.close();

 println("Calibration file loaded.");
 }
 catch (Exception e)
 {
 println(e);
 }
}

void DrawCalibrationGrid()
{
 float tx = width/2.5;
 float ty = height/2.5;
 float tz = -1;

// stroke(0,256,0);

 122

// fill(0,256,0);
stroke(255);
fill(255);

 for(int i=0; i<7; i++)
 {
 float ix = width*i/6.0;
 float iy = height*i/6.0;
 line(ix, 0, ix, height);
 line(0, iy, width, iy);
 }

 stroke(255,0,0);
 fill(255,0,0);

 if(g_calibration_mode == OFFSET_XY)
 text("> OFFSET XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_XY)
 text("> ROTATE XY <", tx, ty, tz);

 if(g_calibration_mode == ROTATE_Z)
 text("> ROTATE Z <", tx, ty, tz);

 if(g_calibration_mode == SCALE_XY)
 text("> SCALE XY <", tx, ty, tz);
}

void keyPressed()
{

if(key == 'r') // Reset
{
 g_ax = 0.0; g_ay = 0.0; g_az = 0.0;
 g_sx = 1.0; g_sy = 1.0;
 g_ox = 0.0; g_oy = 0.0;
}

if(key == 's') // Save to file
{
 CalibrationSave("calibration.dat");
}

if(key == 'l') // Load from file
{
 CalibrationLoad("calibration.dat");
}

if(key == ENTER)
{
 g_calibration_mode = (g_calibration_mode + 1) % 5;
}

if (key != CODED)
{
 return;
}

 123

if(g_calibration_mode == OFFSET_XY)
{
 if (keyCode == LEFT) g_ox-=2.5;
 if (keyCode == RIGHT) g_ox+=2.5;
 if (keyCode == UP) g_oy-=2.5;
 if (keyCode == DOWN) g_oy+=2.5;
}
if(g_calibration_mode == ROTATE_XY)
{
 if (keyCode == LEFT) g_ax-=0.025;
 if (keyCode == RIGHT) g_ax+=0.025;
 if (keyCode == UP) g_ay-=0.025;
 if (keyCode == DOWN) g_ay+=0.025;
}
if(g_calibration_mode == ROTATE_Z)
{
 if (keyCode == LEFT) g_az-=0.0125;
 if (keyCode == RIGHT) g_az+=0.0125;
}
if(g_calibration_mode == SCALE_XY)
{
 if (keyCode == LEFT) g_sx-=0.025;
 if (keyCode == RIGHT) g_sx+=0.025;
 if (keyCode == UP) g_sy-=0.025;
 if (keyCode == DOWN) g_sy+=0.025;
}

}

// Original idea by Daniel Gallardo
void ApplyCalibrationMatrix()
{
int g_w = 1024;
int g_h = 768;

float fov = PI/3.0;
float cameraZ = (height/2.0) / tan(fov/2.0);

//perspective(fov, float(g_w)/float(g_h),
// 0.0, 100.0);

 translate(g_ox,
 g_oy,
 -4.0f);

 translate(g_w/2, g_w/2, 0);

 rotateX(g_ax);
 rotateY(g_ay);

 rotateZ(g_az);

 scale(g_sx, g_sy, 1);

 translate(-g_w/2, -g_h/2, 0);

 124

}

// these are some helper variables which are used
// to create scalable graphical feedback
float cursor_size = 20;
float object_size = 40;
float table_size = 480;
float scale_factor = 1.2;

PFont font;

// Don't show frame, as in http://processing.org/hacks/hacks:undecoratedframe
void init()
{
 if(FULL_SCREEN)
 {
 frame.removeNotify();
 frame.setUndecorated(true);
 frame.addNotify();
 }

 super.init();
}

void setup()
{
 output = createWriter("S2_T/ID_12.txt");
 startingTime = millis();
 state = START;

 totalTime = 10000;

 red_state = 0;
 blu_state = 0;
 adore = loadFont("Adore64-30.vlw");
 f = loadFont("Verdana-48.vlw");
 textSize(28);

 minim = new Minim(this);

 bop = minim.loadSample("Bop.aiff", 512);
 ball = minim.loadSample("Ball.aiff", 512);
 score = minim.loadSample("Score.aiff", 512);
 start = minim.loadSample("Start.aiff", 512);
 wrong = minim.loadSample("Wrong.aiff", 512);
 count = minim.loadFile("Countr.wav", 2048);

 tuioClient = new TuioProcessing(this);

 Fisica.init(this);

 world = new FWorld();
 world.setGravity(0,0);

 125

 if(FULL_SCREEN)
 size(1024,768, OPENGL); // <-- resolution of the other screen here
 else
 size(1024,768, OPENGL); // <-- whatever fits the desktop

frameRate(60);

 if(DUAL_VIEW)
 {
 delay(5000); // wait for the window to be set up...
 frame.setLocation(screen.width, 0); // Move it on the other screen
 }
 else
 {
 frame.setLocation(0, 0);
 }

 // disable 2xFSAA (enabled by default in newer Processings)
 hint(DISABLE_OPENGL_2X_SMOOTH);
 // hint(ENABLE_OPENGL_4X_SMOOTH)

 hint(DISABLE_OPENGL_ERROR_REPORT);
 hint(DISABLE_DEPTH_TEST);

 // Enable GL_*_SMOOTH hints
 smooth();

 noStroke();
 fill(0);

 hint(ENABLE_NATIVE_FONTS);
 font = createFont("Arial", 32);
 scale_factor = height/table_size;

 strokeWeight(4); // nicer

 // an instance of the TuioClient
 // since we add "this" class as an argument, the TuioClient expects
 // an implementation of the TUIO callback methods (see below)

 // 3333 is default in reactivision (and due to a bug, it seems that it can NOT be changed ?)
 //tuioClient = new TuioProcessing(this, 3333);

 CalibrationLoad("calibration.dat");

 myobj = new TuioObject(0,0,0,0,0);

output.println("ID_01\tMin\tSec\tMillis\tRed\tBlu\tSpeed\t\tAccel\t\tXpos\tYpos\tBallX\tBallY\tBall
Speed");
}

//===
============
// within the draw method we retrieve an array of TuioObject and TuioCursor
// from the TuioClient and then loop over both lists to draw the graphical feedback.
void draw()

 126

{

ApplyCalibrationMatrix();

 fill(0,alfa);
 noStroke();
 rect(0,0,width,height);

 int milliseconds = (millis() - startingTime);
 int seconds = (millis() - startingTime) / 1000;
 int minutes = seconds / 60;

 if (seconds > totalTime){
 state = END;
 output.close();
 }
 if (seconds == totalTime - 8){
 count.play();
 }
 if (seconds > 180){
 ball1.setVelocity(0,randomVel2[vel]);
 ball2.setVelocity(0,randomVel2[vel]);
 ballSpeed = randomVel2[velCurrent];
 }
 if (seconds > 290){
 ball1.setVelocity(0,randomVel3[vel]);
 ball2.setVelocity(0,randomVel3[vel]);
 ballSpeed = randomVel3[velCurrent];
 }

 switch(state) {
 case START:
 startSplash();
 drawAnimatedBall();
 break;
 case PLAYING:
 drawBall1();
 //drawBall2();
 drawScore();
 drawLine();
 if(ball1Exists || ball2Exists){
 output.println("\t"+minutes+"\t" +seconds+"\t"+(millis() -
ballTime)+"\t"+red_state+"\t"+blu_state+"\t"

+int(myobj.getMotionSpeed()*pow(10,2))/pow(10,2)+"\t\t"+int(myobj.getMotionAccel()*pow(10,2)
)/pow(10,2)+"\t\t"
 +myobj.getScreenX(width)+"\t"+myobj.getScreenY(height)+"\t"+ballX+
"\t"+int(ballPosY)+"\t"+ballSpeed);
 output.flush();
 }
 break;
 case END:
 endSplash();
 break;
 }

 127

if(g_calibration_mode > 0)
{
 DrawCalibrationGrid();
 }
}

void drawBall1() {
 if (ball1Exists){
 ballPosY = ball1.getY();
 if (ballPosY > 780){
 world.remove(ball1);
 ball1Exists = false;
 }
 }
 if (ball2Exists){
 ballPosY = ball2.getY();
 if (ballPosY > 780){
 world.remove(ball2);
 ball2Exists = false;
 }
}
 if (((frameCount) % randomTime[randtime]) == 0) {
 vel = int(random(3));
 randball = int(random(10));
 randpos = int(random(6));
 randtime = int(random(3));
 while(true){
 if (vel == velCurrent){
 vel = int(random(3));
 }else{
 velCurrent = vel;
 ballSpeed = randomVel1[velCurrent];
 break;
 }
 }
 while(true){
 if (randpos == posCurrent){
 randpos = int(random(6));
 }else{
 posCurrent = randpos;
 ballX = randomPos[posCurrent];
 break;
 }
 }
 if (randball < 6){
 ball1 = new FCircle(15);
 ball1.setGroupIndex(-1);
 ball1.setNoStroke();
 ball1.setFill(255,0,0);
 ball1.setPosition(randomPos[posCurrent],50);
 ball1.setVelocity(0,randomVel1[velCurrent]);
 ball1.setRestitution(1);
 ball1.setDamping(0);
 world.add(ball1);
 ballTime = millis() - playingTime;
 ball1Exists = true;
 ball.trigger();
 }else{

 128

 ball2 = new FCircle(15);
 ball2.setGroupIndex(-1);
 ball2.setNoStroke();
 ball2.setFill(0,0,255);
 ball2.setPosition(randomPos[randpos],50);
 ball2.setVelocity(0,randomVel1[velCurrent]);
 ball2.setRestitution(1);
 ball2.setDamping(0);
 world.add(ball2);
 ballTime = millis() - playingTime;
 ball2Exists = true;
 ball.trigger();
 }
 }
 world.step();
 world.draw(this);
 }

 void drawLine(){
 noFill();
 stroke(255);
 line(width/2-30,600,width/2+30,600);
 line(width/2,550,width/2,650);
}

void updateScore(int scorer){
 if(scorer == RED){
 red_state++;
 }
 if(scorer == BLU){
 blu_state++;
 }
}

void drawScore() {
 textFont(adore,32);
 fill(255,0,0);
 text(red_state, 207, height/2);
 fill(0,0,255);
 text(blu_state, 800, height/2);
 noFill();
 stroke(255,0,0);
 strokeWeight(2);
}

void drawAnimatedBall(){
 fill(255,0,0);
 ellipse(px,py,10,10);

 px = width/2 + cos(radians(angle))*(radius/1.5);

 py = 600 + sin(radians(angle))*(radius/1.5);

 angle2 = 0;

 for (int i = 0; i < width; i++){
 px2 = width/8 + cos(radians(angle2))*(radius/2);
 py2 = width/8 + sin(radians(angle2))*(radius/2);

 129

 angle2 -= frequency2;
 }

 angle -= frequency;
 x += 1;
}

void contactStarted(FContact contact) {
 FBody body1 = contact.getBody1();
 FBody body2 = contact.getBody2();

 FBody b = null;
 if (contact.getBody1() == paddle) {
 b = contact.getBody2();
 }
 if (b == null) {
 return;
 }
 world.remove(b);

 }

void contactResult(FContactResult result) {
 if ((result.getBody1() == paddle && result.getBody2() == ball1) ||
 (result.getBody2() == paddle && result.getBody1() == ball1)){
 updateScore(RED);
 ball1Exists = false;
 score.trigger();
 } else if ((result.getBody1() == paddle && result.getBody2() == ball2) ||
 (result.getBody2() == paddle && result.getBody1() == ball2)){
 updateScore(BLU);
 ball2Exists = false;
 score.trigger();
 }
 }

void addTuioObject(TuioObject tobj) {
 is_t = true;
 paddle = new FBox(50,15);
 paddle.setFill(255);
 paddle.setNoStroke();
 paddle.setRestitution(1);
 paddle.setStaticBody(true);
 world.add(paddle);
}

void updateTuioObject (TuioObject tobj){
 myobj.update(new
TuioTime(frameCount),tobj.getX(),tobj.getY(),tobj.getXSpeed(),tobj.getYSpeed(),tobj.getMotionAccel
());
 paddle.setPosition(tobj.getScreenX(width),tobj.getScreenY(height));
 paddle.setWidth(60);
}

void removeTuioObject (TuioObject tobj) {
 world.remove(paddle);
}

 130

void startSplash(){
 int seconds = (millis() - startingTime) / 1000;
 textFont(f,25);
 fill(255);
 textAlign(CENTER);
 text("You're about to start the experiment.",width/2 , 190);
 textFont(f,16);
 fill(255);
 textAlign(CENTER);
 text("RED and BLU balls will drop from the top of the screen at random positions.",width/2 ,
230);
 text("Your task will be to intercept the balls with the white paddle ,",width/2 , 260);
 fill(255,0,0);
 text("Try to be as rapid and as quick as possible.",width/2 , 290);
 text("Try to intercept as many ball as possible.",width/2 , 320);
 fill(255);
 text("You will have 5 minutes on the whole to accomplish the task.",width/2 , 350);
 text("Please try to be always concentrated.",width/2 , 380);
 textFont(f,20);
 fill(255);
 textAlign(CENTER);
 text("To start the experiment place the tangible on the white paddle.",width/2 , 410);
 noStroke();
 fill(255);
 rect(width/2-30,600-5,60,10);
 if(is_t == true){
 red_state = 0;
 blu_state = 0;
 state = PLAYING;
 alfa = 200;
 totalTime = 350;
 startingTime = millis();
 playingTime = millis() - startingTime;
 start.trigger();
 }
}

void endSplash() {
 fill(255);
 textFont(adore,22);
 textAlign(CENTER);
 text("Time elapsed", width/2, height/2);
 text("Thank you for participating ;)", width/2, height/2 + 30);
}

void stop()
{
 bop.close();
 ball.close();
 score.close();
 start.close();
 count.close();
 minim.stop();

 super.stop();
}

 131

