

Tangible Syntaxes: Exploring
embodied and tangible I/O
programming systems for children

Abstract
In this paper we introduce a theoretical prototype of
Tangible Syntaxes, a tangible user interface (TUI)
aimed at teaching children about programming and it’s
basic rules and concepts. Our work sets upon standard
approaches in learning programming through tangible
and embodied interaction, trying to push forward some
of its specific aspects. Our aim is to improve and
facilitate the learning process of those aspects of
programming that the child might mostly find
cumbersome, e.g. syntactic constraints and differences
among programming languages and paradigms (e.g.
Imperative vs Declarative, Prolog vs Java, Python vs
C++, etc…). We propose to solve these issues by
developing an intuitive and ready-at-hand interface,
which implements the general principles used in the
logic of programming, as well as being open to different
types of compiling and programming structures.

Keywords
TUI, Tangible Interaction, Education, ICT, TEL, Digital
Literacy

ACM Classification Keywords
H.5.2 - User Interfaces, L.1.2 - Learning Objects

Copyright is held by the author/owner(s).

TEI 2013, February 10-13, 2013, Barcelona, Spain

ACM

Juan Gabriel Tirado
Universitat Pompeu Fabra

Roc Boronat, 138

08018 Barcelona,Spain

juangtirado@gmail.com

Mónica Rikić
info@monicarikic.com

Giovanni Maria Troiano
Universitat Pompeu Fabra

Roc Boronat, 138

08018 Barcelona,Spain

boboscka@gmail.com

 2

Introduction
Digital technologies permeate nowadays nearly every
area of our lives through an increasingly diverse set of
devices, services and infrastructures. For this reason,
few would nowadays dare deny that information and
communication technology (ICT) is important for
learning and teaching. Either for simple vocational and
pragmatic reasons, it is important that young people
become skilled and “literate” in ICT, so as to prepare
them for life beyond school or for deeper cognitive
convictions. "Active Learning" is the suggested
approach to take fully advantage of ITC applied to
learning domains, and it's now becoming the favorite
tendency in technology enhanced learning (TEL)
practices (see [6], [7] and [8]).

One of the hot topics in TEL nowadays is how to
enhance children's understanding of programming and
how to effectively literate them about various
programming languages and paradigms (for example,
see [18]). As the work of Papert at MIT shows, making
programming accessible to children is at the origin of
the field of interaction design for children. Starting with
Logo [9], many programming tools have been
developed with children as the intended users, such as
AlgoBlock [17], ToonTalk [5], AgentSheets [13],
MicroWorlds [19], and finally the successful Scratch
developed at the MIT Media Lab [14].

Tangible Programming for Children
Historically, children have played individually and
collaboratively with physical items such as building
blocks, shape puzzles and jigsaws, and have been
encouraged to play with physical objects to learn a
variety of skills. As previously said, it is now commonly
agreed that physical action is important in learning, and

there is a good deal of research evidence in psychology
to support this. Piaget and Bruner showed that children
can often solve problems when given concrete
materials to work with before they can solve them
symbolically ([3], [10]). With careful design of the
activities themselves, children can thus solve various
problems through manipulation tasks with concrete
physical objects. In this sense, tangible interaction and
TUIs have proved to be very effective technology to
enhance children’s learning practices in various
domains.

Most of the TUI applications designed for school
education would be better classified under Resnick’s
“digital manipulatives” and “programming construction
kits” umbrella; “Kinetic recorders” allow children to
teach an electronic toy how to move by repeating a set
of guiding motions or gestures, such as Curlybot [4],
Topobo [11] or StoryKits [16]. Other devices aim at
helping storytelling, by allowing children to record,
manipulate and play with audio such as Telltale [1],
images and text such as StoryBeads [2], or animated
video such as the I/O Brush [12].

Tangible Syntaxes
It is been explained how Object Oriented Programming
(OOP) is suitable as a programming paradigm at
introductory level for different reasons, i.e. it meets
demands for a modern education with powerful
concepts (inheritance, polymorphism). Moreover, it
seems in line with cognitive processes that are
performed in the human brain during perceiving,
thinking and problem solving tasks [15]. We believe
that, along with the robustness provided by OOP, the
creation of a set up in which children can start form
physical and symbolic computation, than slowly

 3

reaching more abstract reasoning and complexity
displayed by the system, this would help them
understanding the important principles of programming
in an easier and more direct way. This is what we want
to implement in Tangible Syntaxes, a tangible interface
for learning programming, targeted at children from 7
to 12 years of age. This interface is at the prototyping
stage at the moment and it will consist of two different
parts:

1. A set of colored tangible bricks and a board,
representing the console that the child can use
in order to write his/her programs (Figure 1)

2. A physical and/or a digital output, which will
perform various types of actions according to
the input generated at the programming
console.

Figure 1: The objects of programming provided by the Tangible
Syntaxes interface, i.e. Variables, Definitions, Actions and
Arguments

The tangible bricks that the child will use to generate
joint series of commands or functions will have in
principle the shape of cubes, where each cube has a
different image or text printed on top of it and a
different color. Each cube belongs to a different type of
category, according to the type of programming
language that has to be simulated or compiled. For
instance, if we were to simulate the type of Processing
programming structure, the categories would probably
be defined as follows:

• Variables (to be declared at the beginning of
the code or inside its segments, i.e. void
setup(), void draw(), etc…)

• Objects (for instance myDog = new Dog();)
• Actions (for instance x = x+speed)
• Arguments (i.e. numbers or other kind of

events, for instance “10” or “Beep”)
• Conditionals (if, while, for, Boolean, etc…)

To compile their codes correctly, the children will have
to compose sequences with the aforementioned cubes,
respecting the hierarchy established by the syntax and
the structure of the program. For instance, putting an
argument without defining its relation to a variable or a
category will result in no output or displayed error. To
make this clear to the child and help them writing their
program in the proper way, the bricks will be provided
with a small LED light, which will give immediate
feedback by flashing GREEN light in case of correct
connection or RED light in case of mistaken one (Figure
2).

 4

Figure 2: Example of right and wrong connections in Tangible
SYntaxes

Once the composition has been completed without
“bugs” or mistakes, the child can press the
play/compile button, then the output will perform in
correspondence to the instructions given at the console.
In case a physical output would be used, the objects
and the console can be organized so as to simulate and
compile accordingly to Arduino’s syntax. In this case,
the programming objects would remain the same, only
the correct sequences and the hierarchy among them
may change eventually.

We believe that this system may help children to
efficiently and effectively understand the main
principles of programming in an active and playful way,
as well as implicitly teaching them the bridge that
exists between different programming environments
and languages.

Discussion and Future Works
As said before, this work is at his prototyping stage and
still lacks evaluation and real world implementation, so
as to be able to proof its efficiency. However, we
believe that the proposed approach could be fruitful
and possibly lead to good results in terms of learning
impact. Despite the fact that systems as Scratch, Lego
Mindstorms1 or Lego WeDo2 have proven to be highly
effective in teaching children about basic and advanced
concept of programming, they have never really shown
to be able to create a consistent bridge or metaphor
with textual programming environments, which are
used in the professional domain. Our aim is to try to fill
this gap with a system that can provide this metaphor,
as well as investigating possible novel paradigms of
embodied and tangible programming. For example, one
possible future implementation would be allowing
children to program the objects by giving them physical
instructions straight on their surface (for example,
drawing a circle with the finger on the object would
make it rotate in loop, drawing it two times would make
it rotate 2 times, and so on). Another possible approach

1 http://mindstorms.lego.com

2 http://education.lego.com/en-us/products/

 5

would be the one of using the Tangible Syntaxes
system to make children programming each other (for
example pretending that a child is the output of the
program, and this one will have to follow the
instructions received from the console and reproduce
them accordingly), so as to understand the
programming concepts through real physical actions.

References
[1] Ananny, M. (2002). Supporting children’s
collaborative authoring: practicing written literacy while
composing oral texts. Proceedings of the Conference on
Computer Support for Collaborative Learning:
Foundations for a CSCL Community (pp. 595–596).
International Society of the Learning Sciences.

[2] Barry, B. (2000). Story Beads: a wearable for
distributed and mobile storytelling. MIT Masters Thesis.

[3] Bruner, J. (1966). Theory of Instruction.
Cambridge, Mass.: Harvard University Press.

[4] Frei, P., & Su, V. (2000). Curlybot: designing a new
class of computational toys. ... of the SIGCHI
conference on Human

[5] Kahn, K. (1996). ToonTalkTM–An Animated
Programming Environment for Children (Vol. 7).
(Elsevier, Ed.) Journal of Visual Languages &
Computing. Leave & Wegner. (1991). Situated
learning: Legitimate peripheral participation. Cambridge
University Press.

[6] Millner, A. (2008). Supporting Children as they
Program to Make Physical and Virtual Objects Interact.
Proceedings of the 2008 ACM Interaction Design and
Children (IDC) conference.

[7] Millner, A., & Resnick, M. (2005). Hook-ups: How
youth learn through creating physical computer
interfaces. Media Lab master's thesis. Massachusetts
Institute of Technology, Cambridge, MA.

[8] Millner, A., Baafi, E. (2011). Modkit: Blending and
Extending Approachable Platforms for Creating
Computer Programs and Interactive Objects.
Proceedings of the 2011 ACM Interaction Design and
Children conference. Ann Arbor, MI

[9] Papert, S. (1980). Mindstorms: Children,
computers, and powerful ideas.

[10] Piaget, J. (1973). The child and reality: Problems of
genetic psychology.

[11] Raffle, H. S., Parkes, A. J., & Ishii, H. (2004).
Topobo: a constructive assembly system with kinetic
memory. Proceedings of the SIGCHI conference on
Human factors in computing systems (pp. 647–654).
ACM.

[12] Ryokai, K., Marti, S., & Ishii, H. (2004). I/O brush:
drawing with everyday objects as ink. Proceedings of
the SIGCHI conference on Human factors in computing
systems (pp. 303–310). ACM.

[13] Repenning, A., Ioannidou, A., & Zola, J. (2000).
AgentSheets: End-user programmable simulations.
Journal of Artificial Societies and Social Simulation,
3(3).

[14] Resnick et al., M. (2009). Scratch: programming
for all. Commun. ACM 52.

[15] Schwill, A. (1994). Cognitive aspects of object-
oriented programming. IFIP WG 3.1 Working
Conference ”Integrating Information Technology into
Education”

[16] Sherman, L., Druin, A., Montemayor, J., Farber, A.,
Platner, M., Simms, S., Porteous, J., et al. (2001).
StoryKit: tools for children to build room-sized
interactive experiences. CHI’01 extended abstracts on
Human factors in computing systems (pp. 197–198).
ACM.

[17] Suzuki & Kato. (1995). Interaction-level support for
collaborative learning: AlgoBlock\—an open
programming language. (H. John L. Schnase and
Edward L. Cunnius (Eds.). L. Erlbaum Associates Inc.,

 6

Ed.) NJ, USA: In The first international conference on
Computer support for collaborative learning (CSCL '95).

[18] Timothy S. McNerney. 2004. From turtles to
Tangible Programming Bricks: explorations in physical
language design. Personal Ubiquitous Comput. 8, 5
(September 2004), 326-337.

[19] Vincent, J. (2002). MicroWorlds and the integrated
brain. Proceedings of the Seventh world conference on
computers in education conference on Computers in
education: Australian topics-Volume 8 (pp. 131–137).
Australian Computer Society, Inc.

